22 resultados para Surface electron properties


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of six new mixed-ligand dinuclear Mn(II, II) complexes of three different hydrazone Schiff bases (H3L1, H3L2 and H3L3), derived from condensation of the aromatic acid hydrazides benzohydrazide, 2-aminobenzohydrazide or 2-hydroxybenzohydrazide, with 2,3-dihydroxy benzaldehyde, respectively, is reported. Reactions of Mn(NO3)(2) center dot 4H(2)O with the H3L1-3 compounds, in the presence of pyridine (1 : 1 : 1 mole ratio), in methanol at room temperature, yield [Mn(H2L1)(py)(H2O)](2)(NO3)(2) center dot 2H(2)O (1 center dot 2H(2)O), [Mn(H2L2)(py)(CH3OH)](2)(NO3)(2) center dot 4H(2)O (2 center dot 4H(2)O) and [Mn(H2L3)(py)(H2O)](2)(NO3)(2) (3) respectively, whereas the use of excess pyridine yields complexes with two axially coordinated pyridine molecules at each Mn(II) centre, viz. [Mn(H2L1)(py)(2)] 2(NO3)(2) center dot H2O (4 center dot H2O), [Mn(H2L2)(py) H-O (6 center dot 2CH(3)OH), respectively. In all the complexes, the (H2L1-3)-ligand coordinates in the keto form. Complexes 1 center dot 2H(2)O, 2 center dot 4H(2)O, 4 center dot H2O, 5 center dot 2H(2)O and 6 center dot 2CH(3)OH are characterized by single crystal X-ray diffraction analysis. The complexes 1, 2 and 6, having different coordination environments, have been selected for variable temperature magnetic susceptibility measurements to examine the nature of magnetic interaction between magnetically coupled Mn(II) centres and also for exploration of the catalytic activity towards microwave assisted oxidation of alcohols. A yield of 81% (acetophenone) is obtained using a maximum of 0.4% molar ratio of catalyst relative to the substrate in the presence of TEMPO and in aqueous basic solution, under mild conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most active phase of the fluid catalytic cracking (FCC) catalyst, used in oil refinery, is zeolite-Y which is an aluminosilicate with a high internal and external surface area responsible for its high reactivity. Waste FCC catalyst is potentially able to be reused in cement-based materials - as an additive - undergoing a pozzolanic reaction with calcium hydroxide (Ca(OH)2) formed during cement hydration [1-3]. This reaction produces additional strength-providing reaction products i.e., calcium silicate hydrate (C-S-H) and hydrous calcium aluminates (C-A-H) which exact chemical formula and structure are still unknown. Partial replacement of cement by waste FCC catalyst has two key advantages: (1) lowering of cement production with the associated pollution reduction as this industry represents one of the largest sources of man-made CO2 emissions, and (2) improving the mechanical properties and durability of cement-based materials. Despite these advantages, there is a lack of fundamental knowledge on pozzolanic reaction mechanisms as well as spatial distribution of porosity and solid phases interactions at the microstructural level and consequently their relationship with macroscopical engineering properties of catalyst/cement blends. Within this scope, backscattered electron (BSE) images acquired in a scanning electron microscope (SEM) equipped with Energy-Dispersive Spectroscopy (EDS) and by X-ray diffraction were used to investigate chemical composition of hydration products and to analyse spatial information of the microstructure of waste FCC catalyst blended cement mortars. For this purpose mortars with different levels of cement substitution by waste catalyst as well as with different hydration ages, were prepared. The waste FCC catalyst used is produced by the Portuguese refinery company Petrogal S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New homoditopic bis-calix[4]arene-carbazole conjugates, armed with hydrophilic carboxylic acid functions at their lower rims, are disclosed. Evidence for their self-association in solution was gathered from solvatochromic and thermochromic studies, as well as from gel-permeation chromatography analysis. Their ability to function as highly sensitive sensors toward polar electron-deficient aromatic compounds is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.