23 resultados para Spatial processes
Resumo:
This paper presents the recent research results about the development of a Observed Time Difference (OTD) based geolocation algorithm based on network trace data, for a real Universal Mobile Telecommunication System (UMTS) Network. The initial results have been published in [1], the current paper focus on increasing the sample convergence rate, and introducing a new filtering approach based on a moving average spatial filter, to increase accuracy. Field tests have been carried out for two radio environments (urban and suburban) in the Lisbon area, Portugal. The new enhancements produced a geopositioning success rate of 47% and 31%, and a median accuracy of 151 m and 337 m, for the urban and suburban environments, respectively. The implemented filter produced a 16% and 20% increase on accuracy, when compared with the geopositioned raw data. The obtained results are rather promising in accuracy and geolocation success rate. OTD positioning smoothed by moving average spatial filtering reveals a strong approach for positioning trace extracted events, vital for boosting Self-Organizing Networks (SON) over a 3G network.
Resumo:
Renewable energy sources (RES) have unique characteristics that grant them preference in energy and environmental policies. However, considering that the renewable resources are barely controllable and sometimes unpredictable, some challenges are faced when integrating high shares of renewable sources in power systems. In order to mitigate this problem, this paper presents a decision-making methodology regarding renewable investments. The model computes the optimal renewable generation mix from different available technologies (hydro, wind and photovoltaic) that integrates a given share of renewable sources, minimizing residual demand variability, therefore stabilizing the thermal power generation. The model also includes a spatial optimization of wind farms in order to identify the best distribution of wind capacity. This methodology is applied to the Portuguese power system.
Resumo:
Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.
Resumo:
In this article, we calibrate the Vasicek interest rate model under the risk neutral measure by learning the model parameters using Gaussian processes for machine learning regression. The calibration is done by maximizing the likelihood of zero coupon bond log prices, using mean and covariance functions computed analytically, as well as likelihood derivatives with respect to the parameters. The maximization method used is the conjugate gradients. The only prices needed for calibration are zero coupon bond prices and the parameters are directly obtained in the arbitrage free risk neutral measure.
Resumo:
This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.
Resumo:
Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro, especialização em Artes Performativas - interpretação.
Resumo:
The iterative simulation of the Brownian bridge is well known. In this article, we present a vectorial simulation alternative based on Gaussian processes for machine learning regression that is suitable for interpreted programming languages implementations. We extend the vectorial simulation of path-dependent trajectories to other Gaussian processes, namely, sequences of Brownian bridges, geometric Brownian motion, fractional Brownian motion, and Ornstein-Ulenbeck mean reversion process.
Resumo:
BACKGROUNDWhile the pharmaceutical industry keeps an eye on plasmid DNA production for new generation gene therapies, real-time monitoring techniques for plasmid bioproduction are as yet unavailable. This work shows the possibility of in situ monitoring of plasmid production in Escherichia coli cultures using a near infrared (NIR) fiber optic probe. RESULTSPartial least squares (PLS) regression models based on the NIR spectra were developed for predicting bioprocess critical variables such as the concentrations of biomass, plasmid, carbon sources (glucose and glycerol) and acetate. In order to achieve robust models able to predict the performance of plasmid production processes, independently of the composition of the cultivation medium, cultivation strategy (batch versus fed-batch) and E. coli strain used, three strategies were adopted, using: (i) E. coliDH5 cultures conducted under different media compositions and culture strategies (batch and fed-batch); (ii) engineered E. coli strains, MG1655endArecApgi and MG1655endArecA, grown on the same medium and culture strategy; (iii) diverse E. coli strains, over batch and fed-batch cultivations and using different media compositions. PLS models showed high accuracy for predicting all variables in the three groups of cultures. CONCLUSIONNIR spectroscopy combined with PLS modeling provides a fast, inexpensive and contamination-free technique to accurately monitoring plasmid bioprocesses in real time, independently of the medium composition, cultivation strategy and the E. coli strain used.