23 resultados para Soft Single Switched (SSS)
Resumo:
Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We show that a light charged Higgs boson signal via tau(+/-)nu decay can be established at the Large Hadron Collider (LHC) also in the case of single top production. This process complements searches for the same signal in the case of charged Higgs bosons emerging from t (t) over bar production. The models accessible include the Minimal Supersymmetric Standard Model (MSSM) as well a variety of 2-Higgs Doublet Models (2HDMs). High energies and luminosities are however required, thereby restricting interest on this mode to the case of the LHC running at 14TeV with design configuration.
Resumo:
We present a generator for single top-quark production via flavour-changing neutral currents. The MEtop event generator allows for Next-to-Leading-Order direct top production pp -> t and Leading-Order production of several other single top processes. A few packages with definite sets of dimension six operators are available. We discuss how to improve the bounds on the effective operators and how well new physics can be probed with each set of independent dimension six operators.
Resumo:
Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.
Resumo:
Right now you are probably sitting on a comfy cushion. This is most likely filled with polyurethane (PU) foam. PUs are very long molecules made up of many repeating units. If the repeating units are prepolymers – intermediate-mass building blocks – with more than two reactive end groups, a three-dimensional network will form – a rubber, or elastomer, which can behave elastically depending on the degree of network cross-linking.
Resumo:
Beam-like structures are the most common components in real engineering, while single side damage is often encountered. In this study, a numerical analysis of single side damage in a free-free beam is analysed with three different finite element models; namely solid, shell and beam models for demonstrating their performance in simulating real structures. Similar to experiment, damage is introduced into one side of the beam, and natural frequencies are extracted from the simulations and compared with experimental and analytical results. Mode shapes are also analysed with modal assurance criterion. The results from simulations reveal a good performance of the three models in extracting natural frequencies, and solid model performs better than shell while shell model performs better than beam model under intact state. For damaged states, the natural frequencies captured from solid model show more sensitivity to damage severity than shell model and shell model performs similar to the beam model in distinguishing damage. The main contribution of this paper is to perform a comparison between three finite element models and experimental data as well as analytical solutions. The finite element results show a relatively well performance.