35 resultados para Si-29
Resumo:
Amorphous glass/ZnO-Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1-xCx:H)/Al imagers with different n-layer resistivities were produced by plasma enhanced chemical vapour deposition technique (PE-CVD). An image is projected onto the sensing element and leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout, and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The influence of the intensity of the optical image projected onto the sensor surface is correlated with the sensor output characteristics (sensitivity, linearity blooming, resolution and signal-to-noise ratio) are analysed for different material compositions (0.5 < x < 1). The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity signal and on the spatial resolution are achieved at 0.2 mW cm(-2) light flux by decreasing the n-layer conductivity by the same amount. A physical model supported by electrical simulation gives insight into the image-sensing technique used.
Resumo:
ZnO:Al/p (SiC:H)/i (Si:H)/n (SiC:H) large area image and colour sensor are analysed. Carrier transport and collection efficiency are investigated from dark and illuminated current-voltage (I-V) dependence and spectral response measurements under different optical and electrical bias conditions. Results show that the carrier collection depends on the optical bias and on the applied voltage. By changing the electrical bias around the open circuit voltage it is possible to filter the absorption at a given wavelength and so to tune the spectral sensitivity of the device. Transport and optical modelling give insight into the internal physical process and explain the bias control of the spectral response and the image and colour sensing properties of the devices.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização - Ultrassonografia Cardiovascular
Resumo:
O Mercado Ibérico de Electricidade (MIBEL) surge na perspectiva de integração e cooperação dos sectores eléctricos português e espanhol, em resposta ao incentivo da União Europeia (UE) na criação de mercados regionais de electricidade, considerando um posterior alargamento para um mercado europeu de energia. A presente dissertação incide no estudo da previsão horária das estratégias competitivas dos agentes produtores de energia eléctrica no MIBEL, sendo abordado um horizonte de previsão de 5 dias úteis. A variável em estudo trata-se da variação conjectural referente ao próprio MIBEL, a qual estima o grau de competitividade dos agentes do lado da oferta no mercado diário. A metodologia utilizada para previsão passou pela análise de sucessões cronológicas, aplicando modelos ARIMA e modelos de alisamento exponencial. Uma análise breve da previsão do preço horário de energia eléctrica no mercado diário do MIBEL foi também realizada, sendo efectuada a comparação entre a previsão obtida pela análise de sucessões cronológicas e o cálculo do valor de preço previsto com recurso aos dados de variação conjectural previstos. Os resultados alcançados revelam que os modelos estimados que melhor se adequam à previsão horária da variação conjectural referente ao MIBEL, corresponderam maioritariamente ao tipo ARIMA sazonal com sazonalidade diária, seguido de modelos do tipo ARIMA não sazonal. Foi observado ainda, que os modelos seleccionados foram estimados maioritariamente com recurso a uma sucessão cronológica de 5 dias úteis. Por fim, ambas as abordagens utilizadas para realizar a previsão horária do preço de energia eléctrica apresentaram em média, erros médios absolutos para a previsão de 1 e 5 dias úteis iguais entre si.
Resumo:
MOR zeolites were modified via desilication treatments with NaOH, under conventional and microwave heating. The samples were characterized by powder X-ray diffraction, (27)Al and (29)Si NMR spectroscopy. TEM and N(2) adsorption at -196 degrees C. The acidity of the samples and the space available inside the pores were evaluated through a catalytic model reaction, the isomerization of m-xylene, for which the profiles of the coke thermal decomposition were also analyzed. Powder X-ray diffraction and (29)Si and (27)Al MNR results show that in comparison with conventional heating, microwave irradiation (a less time consuming process) leads to identical amount of Si extraction from the zeolite framework. With this treatment. in addition to the customary mesopores development promoted by conventional heating, a partial conversion of the zeolite microporosity into larger micropores, is observed. The microwave irradiated and conventionally heated samples show different catalytic behavior in the m-xylene isomerization model reaction. It was observed that, by controlling the experimental conditions, it is possible to obtain samples with catalytic properties closer to the parent material, which is also confirmed by the respective coke analysis. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Amorphous Si/SiC photodiodes working as photo-sensing or wavelength sensitive devices have been widely studied. In this paper single and stacked a-SiC:H p-i-n devices, in different geometries and configurations, are reviewed. Several readout techniques, depending on the desired applications (image sensor, color sensor, wavelength division multiplexer/demultiplexer device) are proposed. Physical models are presented and supported by electrical and numerical simulations of the output characteristics of the sensors.
Resumo:
This letter reports a near-ultraviolet/visible/near-infrared n(+)-n-i-delta(i)-p photodiode with an absorber comprising a nanocrystalline silicon n layer and a hydrogenated amorphous silicon i layer. Device modeling reveals that the dominant source of reverse dark current is deep defect states in the n layer, and its magnitude is controlled by the i layer thickness. The photodiode with the 900/400 nm thick n-i layers exhibits a reverse dark current density of 3nA/cm(2) at -1V. Donor concentration and diffusion length of holes in the n layer are estimated from the capacitance-voltage characteristics and from the bias dependence of long-wavelength response, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660725]
Resumo:
O artigo teve como base uma comunicação da autora nos Encontros do CEAA/2, sob o título "Artes performativas : novos discursos", em outubro de 2009.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
It is presented in this paper a study on the photo-electronic properties of multi layer a-Si: H/a-SiC: H p-i-n-i-p structures. This study is aimed to give an insight into the internal electrical characteristics of such a structure in thermal equilibrium, under applied Was and under different illumination condition. Taking advantage of this insight it is possible to establish a relation among-the electrical behavior of the structure the structure geometry (i.e. thickness of the light absorbing intrinsic layers and of the internal n-layer) and the composition of the layers (i.e. optical bandgap controlled through percentage of carbon dilution in the a-Si1-xCx: H layers). Showing an optical gain for low incident light power controllable by means of externally applied bias or structure composition, these structures are quite attractive for photo-sensing device applications, like color sensors and large area color image detector. An analysis based on numerical ASCA simulations is presented for describing the behavior of different configurations of the device and compared with experimental measurements (spectral response and current-voltage characteristic). (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Agências financiadoras: National Natural Science Foundation of China - 61204077; Shenzhen Science and Technology Innovation Commission - JCYJ20120614150521967
Resumo:
Nos anos de 1987, 1988 e 1991 foram produzidos e publicados 3 números do "Dança: Boletim da Escola Superior de Dança", sob a direção da Professora Wanda Ribeiro da Silva, com um total de 29 artigos de diversos autores. O objetivo foi contribuir para "uma ampla reflexão do conhecimento artístico e estético e possibilitar o desenvolvimento das capacidades de comunicação ao nível das linguagens e da criatividade."
Resumo:
ABSTRACT - Jean Cocteau, French cinema auteur avant la lettre, has consecrated his uniqueness to the defense of the “poet” and the promotion of its artistic ideals, before the French Nouvelle Vague inspired the break away from the filmic tradition and ahead of the eulogistic tendency to consider the director the undisputed creative entity of the filmmaking process. The Orphic trilogy expresses Cocteau’s cinematic philosophy in action. In other words, it reveals the way by which the creative entity affirms itself as the major filmic enunciator, through an allegorical relationship with vision. Therefore, Cocteau’s self-reflexive metacinema conjoins, in a fertile attunement, the starting point and the ultimate goal, the creation and the reception. Without being exactly a cinema about the cinema, this artistic practice is, nonetheless, very much with the cinema, feeding as it does on its essence. The films Le Sang d’un poète (“The Blood of a Poet”, 1932), Orphée (“Orpheus”, 1950) and Le Testament d’Orphée, ou ne me demandez pas pourquoi! (“Testament of Orpheus”, 1960) recreate, in allegorical form, the double creative function: the look of the directing entity reflects the gaze of the observer, just as this one always restores the presence of the creator. In short: Cocteau’s films, more than anyone else’s, deliberately reflect its auteur as enunciator.
Resumo:
Visible range to telecom band spectral translation is accomplished using an amorphous SiC pi'n/pin wavelength selector under appropriate front and back optical light bias. Results show that background intensity works as selectors in the infrared region, shifting the sensor sensitivity. Low intensities select the near-infrared range while high intensities select the visible part according to its wavelength. Here, the optical gain is very high in the infrared/red range, decreases in the green range, stays close to one in the blue region and strongly decreases in the near-UV range. The transfer characteristics effects due to changes in steady state light intensity and wavelength backgrounds are presented. The relationship between the optical inputs and the output signal is established. A capacitive optoelectronic model is presented and tested using the experimental results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.