45 resultados para Scanning reference electrode technique
Resumo:
This paper describes the operation of a solid-state series stacked topology used as a serial and parallel switch in pulsed power applications. The proposed circuit, developed from the Marx generator concept, balances the voltage stress on each series stacked semiconductor, distributing the total voltage evenly. Experimental results from a 10 kV laboratory series stacked switch, using 1200 V semiconductors in a ten stages solid-state series stacked circuit, are reported and discussed, considering resistive, capacitive and inductive type loads for high and low duty factor voltage pulse operation.
Resumo:
In order to evaluate the capacity of laser scanning cytometry (LSC) to detect acid-fast bacilli directly on clinical samples, a comparison between Kinyoun-stained smears analyzed under light microscopy and propidium iodide-auramine-stained smears analyzed by LSC was performed. The results were compared with those for culture on BACTEC MGIT 960. LSC is a new, reliable methodology to detect Mycobacteria.
Resumo:
In this paper we are concerned with the role played by adverbials in the construction of reference in children's narratives.
Resumo:
Model updating methods often neglect that in fact all physical structures are damped. Such simplification relies on the structural modelling approach, although it compromises the accuracy of the predictions of the structural dynamic behaviour. In the present work, the authors address the problem of finite element (FE) model updating based on measured frequency response functions (FRFs), considering damping. The proposed procedure is based upon the complex experimental data, which contains information related to the damped FE model parameters and presents the advantage of requiring no prior knowledge about the damping matrix structure or its content, only demanding the definition of the damping type. Numerical simulations are performed in order to establish the applicability of the proposed damped FE model updating technique and its results are discussed in terms of the correlation between the simulated experimental complex FRFs and the ones obtained from the updated FE model.
Resumo:
The measurement of room impulse response (RIR) when there are high background noise levels frequently means one must deal with very low signal-to-noise ratios (SNR). if such is the case, the measurement might yield unreliable results, even when synchronous averaging techniques are used. Furthermore, if there are non-linearities in the apparatus or system time variances, the final SNR can be severely degraded. The test signals used in RIR measurement are often disturbed by non-stationary ambient noise components. A novel approach based on the energy analysis of ambient noise - both in the time and in frequency - was considered. A modified maximum length sequence (MLS) measurement technique. referred to herein as the hybrid MLS technique, was developed for use in room acoustics. The technique consists of reducing the noise energy of the captured sequences before applying the averaging technique in order to improve the overall SNRs and frequency response accuracy. Experiments were conducted under real conditions with different types of underlying ambient noises. Results are shown and discussed. Advantages and disadvantages of the hybrid MLS technique over standard MLS technique are evaluated and discussed. Our findings show that the new technique leads to a significant increase in the overall SNR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química e Biológica
Resumo:
Purpose - To verify the results of a diaphragmatic breathing technique (DBT) on diaphragmatic range of motion in healthy subjects. Methods - A total of 51 healthy subjects (10 male; 41 female), mean age 20 years old and a body mass index (BMI) ranging from 15.6 to 34.9 kg/m2, were enrolled in this study. Diaphragmatic range of motion was assessed by M-mode ultrasound imaging. Measurements were made before and after the DBT implementation in a standard protocol, based on 3 seconds of inspiration starting from a maximum expiration. Differences between assessments were analyzed by descriptive statistics and t-test (p < 0.05). Results - Mean value range of motion before DBT was 55.3 ± 13.4 mm and after DBT was 63.8 ± 13.2 mm showing a significant improvement of 8.5 ± 14.7 mm (p < 0.001). A strong correlation between the slope and the range of motion was found (r = 0.71, p < 0.001). Conclusions - Based on ultrasound measurements, it has been proved that DBT really contributes to a higher diaphragmatic range of motion. Future studies are needed in order to understand the influence of protocol parameters (e.g. inspiration time). Clinical implications - In the contest of evidence-based practice in physiotherapy, it has been showed by objective measurements that DBT improves the diaphragm range of motion, translating into a more efficient ventilatory function and thus can be used in clinical setting. To our knowledge this is the first study to assess the effects of DBT on range of motion of diaphragm muscle with ultrasound imaging.
Resumo:
Dissertação apresentada à Escola Superior de Educação de Lisboa para obtenção do Grau de Mestre em Ciências da Educação, especialização em Administração Escolar
Resumo:
Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
This paper presents a novel phase correction technique for Passive Radar which uses targets of opportunity present in the target area as references. The proposed methodology is quite simple and enables the use of low cost hardware with independent oscillators for the reference and surveillance channels which can be geographically distributed. © 2014 IEEE.
Resumo:
Nickel-copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm(-2)) the nickel-copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel-copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge-discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni-Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge-discharge data and the best value (105 F g(-1) at 1 mA cm(-2)) was obtained for nickel-copper foams deposited at 1.8 A cm(-2) for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm(-2).
Resumo:
Radial basis functions are being used in different scientific areas in order to reproduce the geometrical modeling of an object/structure, as well as to predict its behavior. Due to its characteristics, these functions are well suited for meshfree modeling of physical quantities, which for instances can be associated to the data sets of 3D laser scanning point clouds. In the present work the geometry of a structure is modeled by using multiquadric radial basis functions, and its configuration is further optimized in order to obtain better performances concerning to its static and dynamic behavior. For this purpose the authors consider the particle swarm optimization technique. A set of case studies is presented to illustrate the adequacy of the meshfree model used, as well as its link to particle swarm optimization technique. © 2014 IEEE.
Resumo:
No literature data above atmospheric pressure could be found for the viscosity of TOTIVI. As a consequence, the present viscosity results could only be compared upon extrapolation of the vibrating wire data to 0.1 MPa. Independent viscosity measurements were performed, at atmospheric pressure, using an Ubbelohde capillary in order to compare with the vibrating wire results, extrapolated by means of the above mentioned correlation. The two data sets agree within +/- 1%, which is commensurate with the mutual uncertainty of the experimental methods. Comparisons of the literature data obtained at atmospheric pressure with the present extrapolated vibrating-wire viscosity measurements have shown an agreement within +/- 2% for temperatures up to 339 K and within +/- 3.3% for temperatures up to 368 K. (C) 2014 Elsevier B.V. All rights reserved.