25 resultados para SUBSTRATE-TEMPERATURE
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres. (C) 2013 AIP Publishing LLC.
Resumo:
Tin doped indium oxide (ITO) films were deposited on glass substrates by rf reactive magnetron sputtering using a metallic alloy target (In-Sn, 90-10). The post-deposition annealing has been done for ITO films in air and the effect of annealing temperature on the electrical, optical and structural properties of ITO films was studied. It has been found that the increase of the annealing temperature will improve the film electrical properties. The resistivity of as deposited film is about 1.3 x 10(-1) Omega*cm and decreases down to 6.9 x 10(-3) Omega*cm as the annealing temperature is increased up to 500 degrees C. In addition, the annealing will also increase the film surface roughness which can improve the efficiency of amorphous silicon solar cells by increasing the amount of light trapping.
Resumo:
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.
Resumo:
A series of six new mixed-ligand dinuclear Mn(II, II) complexes of three different hydrazone Schiff bases (H3L1, H3L2 and H3L3), derived from condensation of the aromatic acid hydrazides benzohydrazide, 2-aminobenzohydrazide or 2-hydroxybenzohydrazide, with 2,3-dihydroxy benzaldehyde, respectively, is reported. Reactions of Mn(NO3)(2) center dot 4H(2)O with the H3L1-3 compounds, in the presence of pyridine (1 : 1 : 1 mole ratio), in methanol at room temperature, yield [Mn(H2L1)(py)(H2O)](2)(NO3)(2) center dot 2H(2)O (1 center dot 2H(2)O), [Mn(H2L2)(py)(CH3OH)](2)(NO3)(2) center dot 4H(2)O (2 center dot 4H(2)O) and [Mn(H2L3)(py)(H2O)](2)(NO3)(2) (3) respectively, whereas the use of excess pyridine yields complexes with two axially coordinated pyridine molecules at each Mn(II) centre, viz. [Mn(H2L1)(py)(2)] 2(NO3)(2) center dot H2O (4 center dot H2O), [Mn(H2L2)(py) H-O (6 center dot 2CH(3)OH), respectively. In all the complexes, the (H2L1-3)-ligand coordinates in the keto form. Complexes 1 center dot 2H(2)O, 2 center dot 4H(2)O, 4 center dot H2O, 5 center dot 2H(2)O and 6 center dot 2CH(3)OH are characterized by single crystal X-ray diffraction analysis. The complexes 1, 2 and 6, having different coordination environments, have been selected for variable temperature magnetic susceptibility measurements to examine the nature of magnetic interaction between magnetically coupled Mn(II) centres and also for exploration of the catalytic activity towards microwave assisted oxidation of alcohols. A yield of 81% (acetophenone) is obtained using a maximum of 0.4% molar ratio of catalyst relative to the substrate in the presence of TEMPO and in aqueous basic solution, under mild conditions.
Resumo:
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (eta) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 degrees C of the measured brain phantom temperature when the brain phantom is lowered 10. C and then returned to the original temperature (37 degrees C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Resumo:
Microwave assisted synthesis of the Cu(I) compound [Cu(µ4-4-ptz)]n [1, 4-ptz = 5-(4-pyridyl)tetrazolate] has been performed by employing a relatively easy method and within a shorter period of time compared to its sister compounds. The syntheses of the Cu(II) compounds [Cu3(µ3-4-ptz)4(µ2-N3)2(DMF)2]n∙(DMF)2n (2) and [Cu(µ2-4-ptz)2(H2O)2]n (3) using a similar method were reported previously by us. MOFs 1-3 revealed high catalytic activity toward oxidation of cyclic alkanes (cyclopentane, -hexane and -octane) with aqueous hydrogen peroxide, under very mild conditions (at room temperature), without any added solvent or additive. The most efficient system (2/H2O2) showed, for the oxidation of cyclohexane, a turnover number (TON) of 396 (TOF of 40 h−1), with an overall product yield (cyclohexanol and cyclohexanone) of 40% relative to the substrate. Moreover, the heterogeneous catalytic systems 1–3 allowed an easy catalyst recovery and reuse, at least for four consecutive cycles, maintaining ca. 90% of the initial high activity and concomitant high selectivity.
Resumo:
Cubic cobalt nitride films were grown onto different single crystalline substrates Al2O3 (0 0 0 1) and (1 1 View the MathML source 0), MgO (1 0 0) and (1 1 0) and TiO2 (1 0 0) and (1 1 0). The films display low atomic densities compared with the bulk material, are ferromagnetic and have metallic electrical conductivity. X-ray diffraction and X-ray absorption fine structure confirm the cubic structure of the films and with RBS results indicate that samples are not homogeneous at the microscopic scale, coexisting Co4+xN nitride with nitrogen rich regions. The magnetization of the films decreases with increase of the nitrogen content, variation that is shown to be due to the decrease of the cobalt density, and not to a decrease of the magnetic moment per cobalt ion. The films are crystalline with a nitrogen deficient stoichiometry and epitaxial with orientation determined by the substrate.
Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
Resumo:
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
With the help of a unique combination of density functional theory and computer simulations, we discover two possible scenarios, depending on concentration, for the hierarchical self-assembly of magnetic nanoparticles on cooling. We show that typically considered low temperature clusters, i.e. defect-free chains and rings, merge into more complex branched structures through only three types of defects: four-way X junctions, three-way Y junctions and two-way Z junctions. Our accurate calculations reveal the predominance of weakly magnetically responsive rings cross-linked by X defects at the lowest temperatures. We thus provide a strategy to fine-tune magnetic and thermodynamic responses of magnetic nanocolloids to be used in medical and microfluidics applications.