20 resultados para Robinia pseudoacacia extract


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projecto para obtenção do grau de Mestre em Engenharia Informática e de computadores

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The handling of waste can be responsible for occupational exposure to particles and fungi. The aim of this study was to characterize exposure to particles and fungi in a composting plant. Measurements of particulate matter were performed using portable direct-reading equipment. Air samples of 50L were collected through an impaction method with a flow rate of 140L/min onto malt extract agar supplemented with chloramphenicol (0.05%). Surfaces samples were also collected. All the samples were incubated at 27ºC for 5 to 7 days. Particulate matter data showed higher contamination for PM, and PM10 sizes. Aspergillus genus presents the highest air prevalence (90.6%). Aspergillus niger (32.6%), A. fumigatus (26.5%) and A. flavus (16.3%) were the most prevalent fungi in air sampling, and Mucor sp. (39.2%), Aspergillus niger (30.9%) and A. fumigatus (28.7%) were the most found in surfaces. the results obtained claim the attention to the need of further research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several activities are ensured by dockers increase occupational exposure to several risk factors. being one of them the fungal burden from the load. In this study we aim at characterizing fungal contamination in one warehouse that storage sugar cane from a ship, and also in one crane cabinet that unload the same sugar cane from the ship. Air samples were collected from the warehouse and from inside the crane cabinet. An outdoor sample was also collected, from each sampling site, and regarding as reference. Sampling volume was selected depending in the contamination expected and the air samples were collect through an impaction method in a flow rate of 140 L/min onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%), using the Millipore air Tester (Millipore). Surfaces samples from the warehouse were collected by swabbing the surfaces of the same indoor sites, using a 10 by 10cm square stencil according to the International Standard ISO 18593 (2004). The obtained swabs were then plated onto MEA. All the collected samples were incubated at 27ºC for 5 to 7 days. After laboratory processing and incubation of the collected samples, quantitative (colony-forming units - CFU/m3 and CFU/m2) and qualitative results were obtained with identification of the isolated fungal species. Aspergillus fumigatus present the highest fungal load and WHO guideline was overcome in both indoor sampling sites. The results obtained in this study highlight the need to know better the exposure burden from dockers, and specifically to fungi contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Informática

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.