30 resultados para RESPONSE ERROR
Resumo:
Trabalho de Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Aim - To identify clinical and/or genetic predictors of response to several therapies in Crohn’s disease (CD) patients. Methods - We included 242 patients with CD (133 females) aged (mean ± standard deviation) 39 ± 12 years and a disease duration of 12 ± 8 years. The single-nucleotide polymorphisms (SNPs) studied were ABCB1 C3435T and G2677T/A, IL23R G1142A, C2370A, and G9T, CASP9 C93T, Fas G670A and LgC844T, and ATG16L1 A898G. Genotyping was performed with real-time PCR with Taqman probes. Results - Older patients responded better to 5-aminosalicylic acid (5-ASA) and to azathioprine (OR 1.07, p = 0.003 and OR 1.03, p = 0.01, respectively) while younger ones responded better to biologicals (OR 0.95, p = 0.06). Previous surgery negatively influenced response to 5-ASA compounds (OR 0.25, p = 0.05), but favoured response to azathioprine (OR 2.1, p = 0.04). In respect to genetic predictors, we observed that heterozygotes for ATGL16L1 SNP had a significantly higher chance of responding to corticosteroids (OR 2.51, p = 0.04), while homozygotes for Casp9 C93T SNP had a lower chance of responding both to corticosteroids and to azathioprine (OR 0.23, p = 0.03 and OR 0.08, p = 0.02,). TT carriers of ABCB1 C3435T SNP had a higher chance of responding to azathioprine (OR 2.38, p = 0.01), while carriers of ABCB1 G2677T/A SNP, as well as responding better to azathioprine (OR 1.89, p = 0.07), had a lower chance of responding to biologicals (OR 0.31, p = 0.07), which became significant after adjusting for gender (OR 0.75, p = 0.005). Conclusions - In the present study, we were able to identify a number of clinical and genetic predictors of response to several therapies which may become of potential utility in clinical practice. These are preliminary results that need to be replicated in future pharmacogenomic studies.
Resumo:
Introduction: Visual anomalies that affect school-age children represent an important public health problem. Data on the prevalence are lacking in Portugal but is needed for planning vision services. This study was conducted to determine the prevalence of strabismus, decreased visual acuity, and uncorrected refractive error in Portuguese children aged 6 to 11 years. Methods and materials: A cross-sectional study was carried out on a sample of 672 school-age children (7.69 ± 1.19 years). Children received an orthoptic assessment (visual acuity, ocular alignment, and ocular movements) and non-cycloplegic autorefraction. Results: After orthoptic assessment, 13.8% of children were considered abnormal (n = 93). Manifest strabismus was found in 4% of the children. Rates of esotropia (2.1%) were slightly higher than exotropia (1.8%). Strabismus rates were not statistically significant different per sex (p = 0.681) and grade (p = 0.228). Decreased visual acuity at distance was present in 11.3% of children. Visual acuity ≤20/66 (0.5 logMAR) was found in 1.3% of the children. We also found that 10.3% of children had an uncorrected refractive error. Conclusions: Strabismus affects a small proportion of the Portuguese school-age children. Decreased visual acuity and uncorrected refractive error affected a significant proportion of school-age children. New policies need to be developed to address this public health problem.
Resumo:
Mestrado em Gestão e Avaliação de Tecnologias em Saúde
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper focus on a demand response model analysis in a smart grid context considering a contingency scenario. A fuzzy clustering technique is applied on the developed demand response model and an analysis is performed for the contingency scenario. Model considerations and architecture are described. The demand response developed model aims to support consumers decisions regarding their consumption needs and possible economic benefits.
Resumo:
This paper presents a new predictive digital control method applied to Matrix Converters (MC) operating as Unified Power Flow Controllers (UPFC). This control method, based on the inverse dynamics model equations of the MC operating as UPFC, just needs to compute the optimal control vector once in each control cycle, in contrast to direct dynamics predictive methods that needs 27 vector calculations. The theoretical principles of the inverse dynamics power flow predictive control of the MC based UPFC with input filter are established. The proposed inverse dynamics predictive power control method is tested using Matlab/Simulink Power Systems toolbox and the obtained results show that the designed power controllers guarantees decoupled active and reactive power control, zero error tracking, fast response times and an overall good dynamic and steady-state response.
Resumo:
Introduction: University students are frequently exposed to events that can cause stress and anxiety, producing elevated cardiovascular responses. Repeated exposure to academic stress has implications to students’ success and well-being and may contribute to the development of long-term health problems. Objective: To identify stress levels and coping strategies in university students and assess the impact of stress experience in heart rate variability (HRV). Methods: 17 university students, 19-23 years, completed the University Students Stress Inventory, the Depression Anxiety Stress Scales and the Ways of Coping Questionnaire. Two 24h-Holter recordings were performed, on academic activity days, including one of them an exam situation. Results: Students tend to present moderate stress levels, and prefer problem-focused coping strategies in order to manage stress. Exam situations are perceived as significant stressors. Although we found no significant differences in HRV (SDNN), between days with and without an exam, we registered a lower SDNN score and a variation in heart rate (HR) related to exam situation (maximum HR peak at 10 minutes before the exam, and total HR recovery 20 minutes after the exam), reflecting sympathetic activation due to stress. Conclusions: These results suggest that academic events, especially those related to exam situations, are the cause of stress in university students, with implications at cardiovascular level, underlying the importance of interventions that help these students improve their coping skills and optimize stress management, in order to improve academic achievement and promote well-being and quality of life.
Resumo:
In this paper we exploit the nonlinear property of the SiC multilayer devices to design an optical processor for error detection that enables reliable delivery of spectral data of four-wave mixing over unreliable communication channels. The SiC optical processor is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Visible pulsed signals are transmitted together at different bit sequences. The combined optical signal is analyzed. Data show that the background acts as selector that picks one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as EXOR and three bit addition are demonstrated optically, showing that when one or all of the inputs are present, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed using four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all-optical processor for error detection and then provide an experimental demonstration of this idea. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Eletrónica Industrial
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.
Resumo:
As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.