20 resultados para RADIO FREQUENCY IDENTIFICATION SYSTEMS (RFI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety is one of the major concerns of process safety engineers in most industrial facilities all over the world. To this scope, some events play an important role once the effect of their consequences can be assumed as totally undesirable. One of these events refers to the occurrence of a fire. Such event can result in catastrophic consequences for life, equipment, and continuity of activities or even leading to environmental damage. A fire protection equipment with low reliability means that this equipment are often unavailable and thus the risk of a fire increases. Maintenance of fire protection equipment is very important because this kind of systems is mostly in a dormant mode, which gives uncertainty about their operability when demanded in a real situation of fire. This article outlines the importance of tests, inspection, and maintenance operations in the context of a fire sprinkler system and proposes a methodology based on international standards and supported by test/inspection reports to correct the frequency of these actions according to the level of degradation of the components and regarding safety purposes. © 2015 American Institute of Chemical Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.