26 resultados para Polyharmonic distortion modeling. X-parameters. Test-Bench. Planar structures. PHD


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - To compare the image quality and effective dose applying the 10 kVp rule with manual mode acquisition and AEC mode in PA chest X-ray. Method - 68 images (with and without lesions) were acquired using an anthropomorphic chest phantom using a Wolverson Arcoma X-ray unit. These images were compared against a reference image using the 2 alternative forced choice (2AFC) method. The effective dose (E) was calculated using PCXMC software using the exposure parameters and the DAP. The exposure index (lgM provided by Agfa systems) was recorded. Results - Exposure time decreases more when applying the 10 kVp rule with manual mode (50%–28%) when compared with automatic mode (36%–23%). Statistical differences for E between several ionization chambers' combinations for AEC mode were found (p = 0.002). E is lower when using only the right AEC ionization chamber. Considering the image quality there are no statistical differences (p = 0.348) between the different ionization chambers' combinations for AEC mode for images with no lesions. Considering lgM values, it was demonstrated that they were higher when the AEC mode was used compared to the manual mode. It was also observed that lgM values obtained with AEC mode increased as kVp value went up. The image quality scores did not demonstrate statistical significant differences (p = 0.343) for the images with lesions comparing manual with AEC mode. Conclusion - In general the E is lower when manual mode is used. By using the right AEC ionising chamber under the lung the E will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the visibility of the lesions or image quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray fluoroscopy is essential in both diagnosis and medical intervention, although it may contribute to significant radiation doses to patients that have to be optimised and justified. Therefore, it is crucial to the patient to be exposed to the lowest achievable dose without compromising the image quality. The purpose of this study was to perform an analysis of the quality control measurements, particularly dose rates, contrast and spatial resolution of Portuguese fluoroscopy equipment and also to provide a contribution to the establishment of reference levels for the equipment performance parameters. Measurements carried out between 2007 and 2013 on 143 fluoroscopy equipment distributed by 34 nationwide health units were analysed. The measurements suggest that image quality and dose rates of Portuguese equipment are congruent with other studies, and in general, they are as per the Portuguese law. However, there is still a possibility of improvements intending optimisation at a national level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The discovery of X-rays was undoubtedly one of the greatest stimulus for improving the efficiency in the provision of healthcare services. The ability to view, non-invasively, inside the human body has greatly facilitated the work of professionals in diagnosis of diseases. The exclusive focus on image quality (IQ), without understanding how they are obtained, affect negatively the efficiency in diagnostic radiology. The equilibrium between the benefits and the risks are often forgotten. It is necessary to adopt optimization strategies to maximize the benefits (image quality) and minimize risk (dose to the patient) in radiological facilities. In radiology, the implementation of optimization strategies involves an understanding of images acquisition process. When a radiographer adopts a certain value of a parameter (tube potential [kVp], tube current-exposure time product [mAs] or additional filtration), it is essential to know its meaning and impact of their variation in dose and image quality. Without this, any optimization strategy will be a failure. Worldwide, data show that use of x-rays has been increasingly frequent. In Cabo Verde, we note an effort by healthcare institutions (e.g. Ministry of Health) in equipping radiological facilities and the recent installation of a telemedicine system requires purchase of new radiological equipment. In addition, the transition from screen-films to digital systems is characterized by a raise in patient exposure. Given that this transition is slower in less developed countries, as is the case of Cabo Verde, the need to adopt optimization strategies becomes increasingly necessary. This study was conducted as an attempt to answer that need. Although this work is about objective evaluation of image quality, and in medical practice the evaluation is usually subjective (visual evaluation of images by radiographer / radiologist), studies reported a correlation between these two types of evaluation (objective and subjective) [5-7] which accredits for conducting such studies. The purpose of this study is to evaluate the effect of exposure parameters (kVp and mAs) when using additional Cooper (Cu) filtration in dose and image quality in a Computed Radiography system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To compare image quality and effective dose when the 10 kVp rule is applied with manual and AEC mode in PA chest X-ray. Methods and Materials: A total of 68 images (with and without lesions) were acquired of an anthropomorphic chest phantom in a Wolverson Arcoma X-ray unit. The images were evaluated against a reference image using image quality criteria and the 2 alternative forced choice (2 AFC) method by five radiographers. The effective dose was calculated using PCXMC software using the exposure parameters and DAP. The exposure index (lgM) was recorded. Results: Exposure time decreases considerably when applying the 10 kVp rule in manual mode (50%-28%) compared to AEC mode (36%-23%). Statistical differences for effective dose between several AEC modes were found (p=0.002). The effective dose is lower when using only the right AEC ionization chamber. Considering image quality, there are no statistical differences (p=0.348) between the different AEC modes for images with no lesions. Using a higher kVp value the lgM values will also increase. The lgM values showed significant statistical differences (p=0.000). The image quality scores did not present statistically significant differences (p=0.043) for the images with lesions when comparing manual with AEC modes. Conclusion: In general, the dose is lower in the manual mode. By using the right AEC ionising chamber the effective dose will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the detectability of the lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 x 10(-3) m. The experimental data reveal that the target erosion depth profile is a function of the angle. made by B with a horizontal line defined by z = 2 x 10(-3) m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle theta. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goals of the present work are the evaluation of the influence of several variables and test parameters on the melt flow index (MFI) of thermoplastics, and the determination of the uncertainty associated with the measurements. To evaluate the influence of test parameters on the measurement of MFI the design of experiments (DOE) approach has been used. The uncertainty has been calculated using a "bottom-up" approach given in the "Guide to the Expression of the Uncertainty of Measurement" (GUM). Since an analytical expression relating the output response (MFI) with input parameters does not exist, it has been necessary to build mathematical models by adjusting the experimental observations of the response variable in accordance with each input parameter. Subsequently, the determination of the uncertainty associated with the measurement of MFI has been performed by applying the law of propagation of uncertainty to the values of uncertainty of the input parameters. Finally, the activation energy (Ea) of the melt flow at around 200 degrees C and the respective uncertainty have also been determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional film based X-ray imaging systems are being replaced by their digital equivalents. Different approaches are being followed by considering direct or indirect conversion, with the later technique dominating. The typical, indirect conversion, X-ray panel detector uses a phosphor for X-ray conversion coupled to a large area array of amorphous silicon based optical sensors and a couple of switching thin film transistors (TFT). The pixel information can then be readout by switching the correspondent line and column transistors, routing the signal to an external amplifier. In this work we follow an alternative approach, where the electrical switching performed by the TFT is replaced by optical scanning using a low power laser beam and a sensing/switching PINPIN structure, thus resulting in a simpler device. The optically active device is a PINPIN array, sharing both front and back electrical contacts, deposited over a glass substrate. During X-ray exposure, each sensing side photodiode collects photons generated by the scintillator screen (560 nm), charging its internal capacitance. Subsequently a laser beam (445 nm) scans the switching diodes (back side) retrieving the stored charge in a sequential way, reconstructing the image. In this paper we present recent work on the optoelectronic characterization of the PINPIN structure to be incorporated in the X-ray image sensor. The results from the optoelectronic characterization of the device and the dependence on scanning beam parameters are presented and discussed. Preliminary results of line scans are also presented. (C) 2014 Elsevier B.V. All rights reserved.