38 resultados para Phenomenological Models
Resumo:
We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.
Resumo:
We show that in two Higgs doublet models at tree-level the potential minimum preserving electric charge and CP symmetries, when it exists, is the global one. Furthermore, we derived a very simple condition, involving only the coefficients of the quartic terms of the potential, that guarantees spontaneous CP breaking. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Agência Financiadora: Fundação para a Ciência e a Tecnologia (FCT) - PEst-OE/FIS/UI0777/2013; CERN/FP/123580/2011; PTDC/FIS-NUC/0548/2012
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Vienna, Austria, Nov 10-14, 2013
Resumo:
In an attempt at explaining the observed neutrino mass-squared differences and leptonic mixing, lepton mass matrices with zero textures have been widely studied. In the weak basis where the charged lepton mass matrix is diagonal, various neutrino mass matrices with two zeros have been shown to be consistent with the current experimental data. Using the canonical and Smith normal form methods, we construct the minimal Abelian symmetry realizations of these phenomenological two-zero neutrino textures. The implementation of these symmetries in the context of the seesaw mechanism for Majorana neutrino masses is also discussed. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
To study a flavour model with a non-minimal Higgs sector one must first define the symmetries of the fields; then identify what types of vacua exist and how they may break the symmetries; and finally determine whether the remnant symmetries are compatible with the experimental data. Here we address all these issues in the context of flavour models with any number of Higgs doublets. We stress the importance of analysing the Higgs vacuum expectation values that are pseudo-invariant under the generators of all subgroups. It is shown that the only way of obtaining a physical CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses is requiring the vacuum expectation values of the Higgs fields to break completely the full flavour group, except possibly for some symmetry belonging to baryon number. The application of this technique to some illustrative examples, such as the flavour groups Delta (27), A(4) and S-3, is also presented.
Resumo:
We study some properties of the monotone solutions of the boundary value problem (p(u'))' - cu' + f(u) = 0, u(-infinity) = 0, u(+infinity) = 1, where f is a continuous function, positive in (0, 1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of (0, 1) or (0, +infinity) onto [0, +infinity). This problem arises when we look for travelling waves for the reaction diffusion equation partial derivative u/partial derivative t = partial derivative/partial derivative x [p(partial derivative u/partial derivative x)] + f(u) with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator p(nu)= nu/root 1-nu(2). The same ideas apply when P is given by the one- dimensional p- Laplacian P(v) = |v|(p-2)v. In this case, an advection term is also considered. We show that, as for the classical Fisher- Kolmogorov- Petrovski- Piskounov equations, there is an interval of admissible speeds c and we give characterisations of the critical speed c. We also present some examples of exact solutions. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
A new data set of daily gridded observations of precipitation, computed from over 400 stations in Portugal, is used to assess the performance of 12 regional climate models at 25 km resolution, from the ENSEMBLES set, all forced by ERA-40 boundary conditions, for the 1961-2000 period. Standard point error statistics, calculated from grid point and basin aggregated data, and precipitation related climate indices are used to analyze the performance of the different models in representing the main spatial and temporal features of the regional climate, and its extreme events. As a whole, the ENSEMBLES models are found to achieve a good representation of those features, with good spatial correlations with observations. There is a small but relevant negative bias in precipitation, especially in the driest months, leading to systematic errors in related climate indices. The underprediction of precipitation occurs in most percentiles, although this deficiency is partially corrected at the basin level. Interestingly, some of the conclusions concerning the performance of the models are different of what has been found for the contiguous territory of Spain; in particular, ENSEMBLES models appear too dry over Portugal and too wet over Spain. Finally, models behave quite differently in the simulation of some important aspects of local climate, from the mean climatology to high precipitation regimes in localized mountain ranges and in the subsequent drier regions.
Resumo:
This study focus on the probabilistic modelling of mechanical properties of prestressing strands based on data collected from tensile tests carried out in Laboratório Nacional de Engenharia Civil (LNEC), Portugal, for certification purposes, and covers a period of about 9 years of production. The strands studied were produced by six manufacturers from four countries, namely Portugal, Spain, Italy and Thailand. Variability of the most important mechanical properties is examined and the results are compared with the recommendations of the Probabilistic Model Code, as well as the Eurocodes and earlier studies. The obtained results show a very low variability which, of course, benefits structural safety. Based on those results, probabilistic models for the most important mechanical properties of prestressing strands are proposed.
Resumo:
A dynamical approach to study the behaviour of generalized populational growth models from Bets(p, 2) densities, with strong Allee effect, is presented. The dynamical analysis of the respective unimodal maps is performed using symbolic dynamics techniques. The complexity of the correspondent discrete dynamical systems is measured in terms of topological entropy. Different populational dynamics regimes are obtained when the intrinsic growth rates are modified: extinction, bistability, chaotic semistability and essential extinction.
Resumo:
In the stair nested designs with u factors we have u steps and a(1), ... , a(u) "active" levels. We would have a(1) observations with different levels for the first factor each of them nesting a single level of each of the remaining factors; next a(2) observations with level a(1) + 1 for the first factor and distinct levels for the second factor each nesting a fixed level of each of the remaining factors, and so on. So the number of level combinations is Sigma(u)(i=1) a(i). In meta-analysis joint treatment of different experiments is considered. Joining the corresponding models may be useful to carry out that analysis. In this work we want joining L models with stair nesting.
Resumo:
Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
LHC has reported tantalizing hints for a Higgs boson of mass 125 GeV decaying into two photons. We focus on two-Higgs-doublet Models, and study the interesting possibility that the heavier scalar H has been seen, with the lightest scalar h having thus far escaped detection. Nonobservation of h at LEP severely constrains the parameter-space of two-Higgs-doublet models. We analyze cases where the decay H -> hh is kinematically allowed, and cases where it is not, in the context of type I, type II, lepton-specific, and flipped models.
Resumo:
Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.
Resumo:
Functionally graded composite materials can provide continuously varying properties, which distribution can vary according to a specific location within the composite. More frequently, functionally graded materials consider a through thickness variation law, which can be more or less smoother, possessing however an important characteristic which is the continuous properties variation profiles, which eliminate the abrupt stresses discontinuities found on laminated composites. This study aims to analyze the transient dynamic behavior of sandwich structures, having a metallic core and functionally graded outer layers. To this purpose, the properties of the particulate composite metal-ceramic outer layers, are estimated using Mod-Tanaka scheme and the dynamic analyses considers first order and higher order shear deformation theories implemented though kriging finite element method. The transient dynamic response of these structures is carried out through Bossak-Newmark method. The illustrative cases presented in this work, consider the influence of the shape functions interpolation domain, the properties through-thickness distribution, the influence of considering different materials, aspect ratios and boundary conditions. (C) 2014 Elsevier Ltd. All rights reserved.