25 resultados para PYROLYTIC-GRAPHITE ELECTRODE
Resumo:
Cork samples from Betula pendula, Quercus suber and Quercus cerris were submitted to Py-GC-MS/FID at temperatures between 550 degrees C and 900 degrees C and the pyrolysis-derived compounds (py-products) were identified and quantified. Corks were compared with wood samples. Py-products include suberin, lignin and carbohydrates derivatives. Suberin py-products are dominated by unsaturated aliphatics. Corks pyrolysis yield and composition were dramatically influenced by temperature in contrast to wood that showed stable results across temperatures. At 850-900 degrees C the peaks area of cork pyrograms were approximately two times higher than at 550 degrees C, for which yield was about half of the woods, and cork py-products were dominated by suberin-derived short chain aliphatics, namely 1-alkenes, while at 550 degrees C composition was dominated by lignin derivatives. Lignin and carbohydrate derived products decreased dramatically over 750 degrees C while the opposite was observed for unsaturated aliphatics. Cork materials show a high potential as feedstock for production of aliphatic-rich pyrolytic biofuels or as a source of olefins. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The behavior of copper(II) complexes of pentane-2,4-dione and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione, [Cu(acac)(2) (1) and [Cu(HFacac)(2)(H2O)] (2), in ionic liquids and molecular organic solvents, was studied by spectroscopic and electrochemical techniques. The electron paramagnetic resonance characterization (EPR) showed well-resolved spectra in most solvents. In general the EPR spectra of [Cu(acac)(2)] show higher g(z) values and lower hyperfine coupling constants, A(z), in ionic liquids than in organic solvents, in agreement with longer Cu-O bond lengths and higher electron charge in the copper ion in the ionic liquids, suggesting coordination of the ionic liquid anions. For [Cu(HFacac)(2)(H2O)] the opposite was observed suggesting that in ionic liquids there is no coordination of the anions and that the complex is tetrahedrically distorted. The redox properties of the Cu(II) complexes were investigated by cyclic voltammetry (CV) at a Pt electrode (d = 1 mm), in bmimBF(4) and bmimNTf(2) ionic liquids and, for comparative purposes, in neat organic solvents. The neutral copper(II) complexes undergo irreversible reductions to Cu(I) and Cu(0) species in both ILs and common organic solvents (CH2Cl2 or acetonitrile), but, in ILs, they are usually more easier to reduce (less cathodic reduction potential) than in the organic solvents. Moreover, 1 and 2 are easier to reduce in bmimNTf(2) than in bmimBF(4) ionic liquid. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The behavior of two cationic copper complexes of acetylacetonate and 2,2'-bipyridine or 1,10-phenanthroline, [Cu(acac)(bipy)]Cl (1) and [Cu(acac)(phen)]Cl (2), in organic solvents and ionic liquids, was studied by spectroscopic and electrochemical techniques. Both complexes showed solvatochromism in ionic liquids although no correlation with solvent parameters could be obtained. By EPR spectroscopy rhombic spectra with well-resolved superhyperfine structure were obtained in most ionic liquids. The spin Hamiltonian parameters suggest a square pyramidal geometry with coordination of the ionic liquid anion. The redox properties of the complexes were investigated by cyclic voltammetry at a Pt electrode (d = 1 mm) in bmimBF(4) and bmimNTf(2) ionic liquids. Both complexes 1 and 2 are electrochemically reduced in these ionic media at more negative potentials than when using organic solvents. This is in agreement with the EPR characterization, which shows lower A(z) and higher g(z) values for the complexes dissolved in ionic liquids, than in organic solvents, due to higher electron density at the copper center. The anion basicity order obtained by EPR is NTf2-, N(CN)(2)(-), MeSO4- and Me2PO4-, which agrees with previous determinations. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
Treatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
Resumo:
Passive films were grown in potentiodynamic mode, by cyclic voltammetry on AISI 316 and AISI 304 stainless steels. The composition of these films was investigated by X-ray photoelectron spectroscopy (XPS). The electrochemical behaviour and the chemical composition of the passive films formed by cyclic voltammetry were compared to those of films grown under natural conditions (by immersion at open circuit potential, OCP) in alkaline solutions simulating concrete. The study included the effect of pH of the electrolyte and the effect of the presence of chloride ions. The XPS results revealed important changes in the passive film composition, which becomes enriched in chromium and depleted in magnetite as the pH decreases. On the other hand, the presence of chlorides promotes a more oxidised passive layer. The XPS results also showed relevant differences on the composition of the oxide layers for the films formed under cyclic voltammetry and/or under OCP.
Resumo:
A 70Co-30Ni dendritic alloy was produced on stainless steel by pulse electrodeposition in the cathodic domain, and oxidized by potential cycling. X-ray diffraction (XRD) identified the presence of two phases and scanning electron microscopy (SEM) evidenced an open 3D highly branched dendritic morphology. After potential cycling in 1 M KOH, SEM and X-ray photoelectron spectroscopy (XPS) revealed, respectively, the presence of thin nanoplates, composed of Co and Ni oxi-hydroxides and hydroxides over the original dendritic film. Cyclic voltammetry tests showd the presence of redox peaks assigned to the oxidation and reduction of Ni and Co centres in the surface film. Charge/discharge measurements revealed capacity values of 121 mAh g(1) at 1 mA cm(2). The capacity retention under 8000 cycles was above 70%, stating the good reversibility of these redox materials and its suitability to be used as charge storage electrodes. Electrochemical impedance spectroscopy (EIS) spectra, taken under different applied bias, showed that the capacitance increased when the electrode was fully oxidized and decreased when the electrode was reduced, reflecting different states-of-charge of the electrode. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints.
Resumo:
Master Thesis to obtain the Master degree in Chemical Engineering - Branch Chemical Processes
Resumo:
Three-dimensional (3D) nickel-copper (Ni-Cu) nanostructured foams were prepared by galvanostatic electrodeposition, on stainless steel substrates, using the dynamic hydrogen bubble template. These foams were tested as electrodes for the hydrogen evolution reaction (HER) in 8 M KOH solutions. Polarisation curves were obtained for the Ni-Cu foams and for a solid Ni electrode, in the 25-85 degrees C temperature range, and the main kinetic parameters were determined. It was observed that the 3D foams have higher catalytic activity than pure Ni. HER activation energies for the Ni-Cu foams were lower (34-36 kJ mol(-1)) than those calculated for the Ni electrode (62 kJ mol(-1)). The foams also presented high stability for HER, which makes them potentially attractive cathode materials for application in industrial alkaline electrolysers.