25 resultados para Non-Autonomous Dynamical Systems
Resumo:
Agências Financiadoras: FCT e MIUR
Resumo:
In the last decade, local image features have been widely used in robot visual localization. To assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image to those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, we compare several candidate combiners with respect to their performance in the visual localization task. A deeper insight into the potential of the sum and product combiners is provided by testing two extensions of these algebraic rules: threshold and weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance. The voting method, whilst competitive to the algebraic rules in their standard form, is shown to be outperformed by both their modified versions.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
We define nonautonomous graphs as a class of dynamic graphs in discrete time whose time-dependence consists in connecting or disconnecting edges. We study periodic paths in these graphs, and the associated zeta functions. Based on the analytic properties of these zeta functions we obtain explicit formulae for the number of n-periodic paths, as the sum of the nth powers of some specific algebraic numbers.
Resumo:
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.