18 resultados para Non linear adaptive control
Resumo:
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2. © Author(s) 2015.
Resumo:
Trabalho Final de Mestrado para a obtenção de grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
The integrated numerical tool SWAMS (Simulation of Wave Action on Moored Ships) is used to simulate the behavior of a moored container carrier inside Sines’ Harbour. Wave, wind, currents, floating ship and moorings interaction is discussed. Several case scenarios are compared differing in the layout of the harbour and wind and wave conditions. The several harbour layouts correspond to proposed alternatives for the future expansion of Sines’ terminal XXI that include the extension of the East breakwater and of the quay. Additionally, the influence of wind on the behavior of the ship moored and the introduction of pre tensioning the mooring lines was analyzed. Hydrodynamic forces acting on the ship are determined using a modified version of the WAMIT model. This modified model utilizes the Haskind relations and the non-linear wave field inside the harbour obtained with finite element numerical model, BOUSS-WMH (Boussinesq Wave Model for Harbors) to get the wave forces on the ship. The time series of the moored ship motions and forces on moorings are obtained using BAS solver. © 2015 Taylor & Francis Group, London.