45 resultados para NUCLEAR-COMPLEX
Resumo:
Este artigo é uma introdução à teoria do paradigma desconstrutivo de aprendizagem cooperativa. Centenas de estudos provam com evidências o facto de que as estruturas e os processos de aprendizagem cooperativa aumentam o desempenho académico, reforçam as competências de aprendizagem ao longo da vida e desenvolvem competências sociais, pessoais de cada aluno de uma forma mais eficaz e usta, comparativamente às estruturas tradicionais de aprendizagem nas escolas. Enfrentando os desafios dos nossos sistemas educativos, seria interessante elaborar o quadro teórico do discurso da aprendizagem cooperativa, dos últimos 40 anos, a partir de um aspeto prático dentro do contexto teórico e metodológico. Nas últimas décadas, o discurso cooperativo elaborou os elementos práticos e teóricos de estruturas e processos de aprendizagem cooperativa. Gostaríamos de fazer um resumo desses elementos com o objetivo de compreender que tipo de mudanças estruturais podem fazer diferenças reais na prática de ensino e aprendizagem. Os princípios básicos de estruturas cooperativas, os papéis de cooperação e as atitudes cooperativas são os principais elementos que podemos brevemente descrever aqui, de modo a criar um quadro para a compreensão teórica e prática de como podemos sugerir os elementos de aprendizagem cooperativa na nossa prática em sala de aula. Na minha perspetiva, esta complexa teoria da aprendizagem cooperativa pode ser entendida como um paradigma desconstrutivo que fornece algumas respostas pragmáticas para as questões da nossa prática educativa quotidiana, a partir do nível da sala de aula para o nível de sistema educativo, com foco na destruição de estruturas hierárquicas e antidemocráticas de aprendizagem e, criando, ao mesmo tempo, as estruturas cooperativas.
Resumo:
The handling of waste and compost that occurs frequently in composting plants (compost turning, shredding, and screening) has been shown to be responsible for the release of dust and air borne microorganisms and their compounds in the air. Thermophilic fungi, such as A. fumigatus, have been reported and this kind of contamination in composting facilities has been associated with increased respiratory symptoms among compost workers. This study intended to characterize fungal contamination in a totally indoor composting plant located in Portugal. Besides conventional methods, molecular biology was also applied to overcome eventual limitations.
Resumo:
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Resumo:
Mestrado em Gestão e Avaliação de Tecnologias em Saúde
Resumo:
Introduction - European nuclear medicine technologist’s education is delivered by Higher Education Institutions and students obtain a grade of Bachelor of Sciences (BSc), during which they are initiated to research during their studies. Once BSc nuclear medicine technologists are in professional practice, they have very few opportunities to develop a real research experience and they rather become passive users than active contributors the growth of scientific knowledge in nuclear medicine. Aim - To describe and discuss an innovative educational and professional experience aimed in strengthen research knowledge, skills and competencies of former nuclear medicine technologists student in the context of an international mobility stay.
Resumo:
Medical imaging is a powerful diagnostic tool. Consequently, the number of medical images taken has increased vastly over the past few decades. The most common medical imaging techniques use X-radiation as the primary investigative tool. The main limitation of using X-radiation is associated with the risk of developing cancers. Alongside this, technology has advanced and more centres now use CT scanners; these can incur significant radiation burdens compared with traditional X-ray imaging systems. The net effect is that the population radiation burden is rising steadily. Risk arising from X-radiation for diagnostic medical purposes needs minimising and one way to achieve this is through reducing radiation dose whilst optimising image quality. All ages are affected by risk from X-radiation however the increasing population age highlights the elderly as a new group that may require consideration. Of greatest concern are paediatric patients: firstly they are more sensitive to radiation; secondly their younger age means that the potential detriment to this group is greater. Containment of radiation exposure falls to a number of professionals within medical fields, from those who request imaging to those who produce the image. These staff are supported in their radiation protection role by engineers, physicists and technicians. It is important to realise that radiation protection is currently a major European focus of interest and minimum competence levels in radiation protection for radiographers have been defined through the integrated activities of the EU consortium called MEDRAPET. The outcomes of this project have been used by the European Federation of Radiographer Societies to describe the European Qualifications Framework levels for radiographers in radiation protection. Though variations exist between European countries radiographers and nuclear medicine technologists are normally the professional groups who are responsible for exposing screening populations and patients to X-radiation. As part of their training they learn fundamental principles of radiation protection and theoretical and practical approaches to dose minimisation. However dose minimisation is complex – it is not simply about reducing X-radiation without taking into account major contextual factors. These factors relate to the real world of clinical imaging and include the need to measure clinical image quality and lesion visibility when applying X-radiation dose reduction strategies. This requires the use of validated psychological and physics techniques to measure clinical image quality and lesion perceptibility.
Resumo:
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.
Resumo:
Purpose - The education and training of a nuclear medicine technologist (NMT) is not homogeneous among European countries, which leads to different scope of practices and, therefore, different technical skills are assigned. The goal of this research was to characterize the education and training of NMT in Europe. Materials and methods - This study was based on a literature research to characterize the education and training of NMT and support the historical evolution of this profession. It was divided into two different phases: the first phase included analysis of scientific articles and the second phase included research of curricula that allow health professionals to work as NMT in Europe. Results - The majority of the countries [N=31 (89%)] offer the NMT curriculum integrated into the high education system and only in four (11%) countries the education is provided by professional schools. The duration in each education system is not equal, varying in professional schools (2-3 years) and high education level system (2-4 years), which means that different European Credit Transfer and Accumulation System, such as 240, 230, 222, 210 or 180 European Credit Transfer and Accumulation System, are attributed to the graduates. The professional title and scope of the practice of NMT are different in different countries in Europe. In most countries of Europe, nuclear medicine training is not specific and curriculum does not demonstrate the Nuclear Medicine competencies performed in clinical practice. Conclusion - The heterogeneity in education and training for NMT is an issue prevalent among European countries. For NMT professional development, there is a huge need to formalize and unify educational and training programmes in Europe.
Resumo:
A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.
Resumo:
The latest LHC data confirmed the existence of a Higgs-like particle and made interesting measurements on its decays into gamma gamma, ZZ*, WW*, tau(+)tau(-), and b (b) over bar. It is expected that a decay into Z gamma might be measured at the next LHC round, for which there already exists an upper bound. The Higgs-like particle could be a mixture of scalar with a relatively large component of pseudoscalar. We compute the decay of such a mixed state into Z gamma, and we study its properties in the context of the complex two Higgs doublet model, analysing the effect of the current measurements on the four versions of this model. We show that a measurement of the h -> Z gamma rate at a level consistent with the SM can be used to place interesting constraints on the pseudoscalar component. We also comment on the issue of a wrong sign Yukawa coupling for the bottom in Type II models.
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Resumo:
In this paper we develop an appropriate theory of positive definite functions on the complex plane from first principles and show some consequences of positive definiteness for meromorphic functions.