43 resultados para Multiparty computation
Resumo:
Dissertação de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Ramo de Manutenção e Produção
Resumo:
Esta comunicação insere-se no Projeto “Pensamento numérico e cálculo flexível: Aspetos críticos”. Começa por discutir o que se entende por flexibilidade de cálculo e raciocínio quantitativo aditivo, discutindo depois os resultados de entrevistas individuais realizadas com quatro alunos (dois do 1.º ano e dois do 2.º ano) quando lhes foram propostas tarefas onde aqueles aspetos estavam presentes. Trata-se de um estudo exploratório cujo principal objetivo é compreender o raciocínio dos alunos quando resolvem tarefas numéricas envolvendo situações aditivas, e ainda identificar aspetos associados à flexibilidade de cálculo e ao raciocínio quantitativo. Os resultados mostram que, no caso dos alunos do 1.º ano, o seu desempenho parece estar relacionado com o seu desenvolvimento do sentido do número e com as relações que dominam. Para os alunos do 2.º ano, o raciocínio inversivo constituiu um aspeto crítico, que conseguiram mobilizar depois de superadas as dificuldades iniciais. Os resultados sugerem, ainda, que estes alunos concebem a diferença como uma relação invariante numérica.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Independent component analysis (ICA) has recently been proposed as a tool to unmix hyperspectral data. ICA is founded on two assumptions: 1) the observed spectrum vector is a linear mixture of the constituent spectra (endmember spectra) weighted by the correspondent abundance fractions (sources); 2)sources are statistically independent. Independent factor analysis (IFA) extends ICA to linear mixtures of independent sources immersed in noise. Concerning hyperspectral data, the first assumption is valid whenever the multiple scattering among the distinct constituent substances (endmembers) is negligible, and the surface is partitioned according to the fractional abundances. The second assumption, however, is violated, since the sum of abundance fractions associated to each pixel is constant due to physical constraints in the data acquisition process. Thus, sources cannot be statistically independent, this compromising the performance of ICA/IFA algorithms in hyperspectral unmixing. This paper studies the impact of hyperspectral source statistical dependence on ICA and IFA performances. We conclude that the accuracy of these methods tends to improve with the increase of the signature variability, of the number of endmembers, and of the signal-to-noise ratio. In any case, there are always endmembers incorrectly unmixed. We arrive to this conclusion by minimizing the mutual information of simulated and real hyperspectral mixtures. The computation of mutual information is based on fitting mixtures of Gaussians to the observed data. A method to sort ICA and IFA estimates in terms of the likelihood of being correctly unmixed is proposed.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Myocardial Perfusion Gated Single Photon Emission Tomography (Gated-SPET) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV). The purpose of this study is to evaluate the influence of the total number of counts acquired from myocardium, in the calculation of myocardial functional parameters using routine software procedures. Methods: Gated-SPET studies were simulated using Monte Carlo GATE package and NURBS phantom. Simulated data were reconstructed and processed using the commercial software package Quantitative Gated-SPECT. The Bland-Altman and Mann-Whitney-Wilcoxon tests were used to analyze the influence of the number of total counts in the calculation of LV myocardium functional parameters. Results: In studies simulated with 3MBq in the myocardium there were significant differences in the functional parameters: Left ventricular ejection fraction (LVEF), end-systolic volume (ESV), Motility and Thickness; between studies acquired with 15s/projection and 30s/projection. Simulations with 4.2MBq show significant differences in LVEF, end-diastolic volume (EDV) and Thickness. Meanwhile in the simulations with 5.4MBq and 8.4MBq the differences were statistically significant for Motility and Thickness. Conclusion: The total number of counts per simulation doesn't significantly interfere with the determination of Gated-SPET functional parameters using the administered average activity of 450MBq to 5.4MBq in myocardium.
Resumo:
Human virtual phantoms are being widely used to simulate and characterize the behavior of different organs, either in diagnosis stages but also to enable foreseeing the therapeutic effects obtained on a certain patient. In the present work a typical patient’s heart was simulated using XCAT2©, considering the possibility of a lesion and/or anatomical alteration being affecting the myocardium. These simulated images, were then used to carry out a set of parametric studies using Matlab©. Although performed in controlled sceneries, these studies are very important to understand and characterize the performance of the methodologies used, as well as to determine to what extent the relations between the perturbation introduced at the myocardium and the resulting simulated images can be considered conclusive.
Resumo:
Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
Workflows have been successfully applied to express the decomposition of complex scientific applications. This has motivated many initiatives that have been developing scientific workflow tools. However the existing tools still lack adequate support to important aspects namely, decoupling the enactment engine from workflow tasks specification, decentralizing the control of workflow activities, and allowing their tasks to run autonomous in distributed infrastructures, for instance on Clouds. Furthermore many workflow tools only support the execution of Direct Acyclic Graphs (DAG) without the concept of iterations, where activities are executed millions of iterations during long periods of time and supporting dynamic workflow reconfigurations after certain iteration. We present the AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic) model of computation, based on the Process Networks model, where the workflow activities (AWA) are autonomic processes with independent control that can run in parallel on distributed infrastructures, e. g. on Clouds. Each AWA executes a Task developed as a Java class that implements a generic interface allowing end-users to code their applications without concerns for low-level details. The data-driven coordination of AWA interactions is based on a shared tuple space that also enables support to dynamic workflow reconfiguration and monitoring of the execution of workflows. We describe how AWARD supports dynamic reconfiguration and discuss typical workflow reconfiguration scenarios. For evaluation we describe experimental results of AWARD workflow executions in several application scenarios, mapped to a small dedicated cluster and the Amazon (Elastic Computing EC2) Cloud.
Resumo:
In global scientific experiments with collaborative scenarios involving multinational teams there are big challenges related to data access, namely data movements are precluded to other regions or Clouds due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is processing local data sets using specialized algorithms and producing intermediate results that are helpful as inputs to applications running on remote sites. This paper shows how to model such collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run the workflow activities on distributed data centers in different regions without the need of large data movements. The AWARD workflow activities are independently monitored and dynamically reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the computation results or by changing the workflow structure to support feedback dependencies where an activity receives feedback output from a successor activity. A real implementation of one practical scenario and its execution on multiple data centers of the Amazon Cloud is presented including experimental results with steering by multiple users.
Resumo:
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e. g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 x 4,320 at 30 fps) in real time.
Resumo:
This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.
Resumo:
Functionally graded materials are a type of composite materials which are tailored to provide continuously varying properties, according to specific constituent's mixing distributions. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, because of this continuous properties variation characteristic, which enables among other advantages, smoother stresses distribution profiles. Therefore the growing trend on the use of these materials brings together the interest and the need for getting optimum configurations concerning to each specific application. In this work it is studied the use of particle swarm optimization technique for the maximization of a functionally graded sandwich beam bending stiffness. For this purpose, a set of case studies is analyzed, in order to enable to understand in a detailed way, how the different optimization parameters tuning can influence the whole process. It is also considered a re-initialization strategy, which is not a common approach in particle swarm optimization as far as it was possible to conclude from the published research works. As it will be shown, this strategy can provide good results and also present some advantages in some conditions. This work was developed and programmed on symbolic computation platform Maple 14. (C) 2013 Elsevier B.V. All rights reserved.