26 resultados para Molecular layer doping
Resumo:
A Formalina 10% Tamponada (FNT 10%) é considerada o fixador de eleição nos Laboratórios de Anatomia Patológica. Contudo, a exposição a esta substância acarreta riscos para a saúde dos técnicos. A International Agency for Research on Cancer (IARC) classificou-a como cancerígeno humano e estudos relevam uma correlação positiva entre a exposição a formaldeído e o desenvolvimento de leucemia e leucemia mielóide. Torna-se relevante alterar o processo de fixação substituindo a FNT 10% por outros fixadores melhorando estas questões. Como tal, desenvolveram-se fixadores à base de outros compostos químicos que não formaldeído, como o Fixador Molecular Universal (UMFIX) que tem como base metanol e polietilenoglicol e que é usualmente utilizado com um processador rápido de micro-ondas. Pretende-se comparar as diferenças entre a fixação por FNT 10% e a fixação por UMFIX, em tecido hepático processado em processador rápido de micro-ondas, para as colorações de Hematoxilina-Eosina (H&E), Tricrómio de Gomori, Reticulina e PAS, através da qualidade final das lâminas testadas. A coloração de H&E foi a única que apresentou diferenças estatisticamente significativas entre os dois fixadores (p=0,032; α<0,05; Mann-Whitney). O UMFIX apresenta-se como um substituto da FNT 10% para o processamento rápido em micro-ondas, pois além de apresentar lâminas com uma qualidade final semelhante ou superior às da FNT 10%, ultrapassa os riscos referidos.
Resumo:
Background - Aspergillus respiratory infection is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function and allergic disease. Methods - Fifty-three Aspergillus isolates recovered from CF patients were identified to species by Internal Transcribed Spacer Region (ITS), β-tubulin, and calmodulin sequencing. Results - Three species complexes (Terrei, Nigri, and Fumigati) were found. Identification to species level gave a single Aspergillus terreus sensu stricto, one Aspergillus niger sensu stricto and 51 Aspergillus fumigatus sensu stricto isolates. No cryptic species were found. Conclusions - To our knowledge, this is the first prospective study of Aspergillus species in CF using molecular methods. The paucity of non-A. fumigatus and of cryptic species of A. fumigatus suggests a special association of A. fumigatus sensu stricto with CF airways, indicating it likely displays unique characteristics making it suitable for chronic residence in that milieu. These findings could refine an epidemiologic and therapeutic approach geared to this pathogen.
Resumo:
Portugal has been the world leader in the cork sector in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi, raising concerns as potential occupational hazards in cork industry. The application of molecular tools is crucial in this setting, since fungal species with faster growth rates may hide other species with clinical relevance, such as species belonging to P. glabrum and A. fumigatus complexes. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de mestre em Engenharia Química e Biológica
Resumo:
This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.
Resumo:
Trabalho Final de Mestrado para obtenção do Grau de Mestre em Engenharia Química e Biológica
Resumo:
EPO is a glycoprotein produced in the kidney, which stimulates the division and differentiation of red cells in the bone marrow. Erythropoietin is available as a therapeutic agent produced by recombinant DNA technology in mammalian cell culture into which the human EPO gene has been transfected. Biosimilar Epoetins are mostly erythropoietins of the Epoetin alfa, beta or omega type, which are being produced at much lower cost due to expired patents. Recombinant human erythropoietin (rh-EPO) contains the identical amino acid sequence of natural EPO: 165 amino acids, with a molecular weight of 30,400 Da. Since glycosylation is not only dependent on the cell-line used for the expression of Epoetins but also on the entire biotechnological process the glycosylation patterns of biosimilars do not necessarily reflect the patterns of the originator compounds. Today biosimilar Epoetins are manufactured and distributed worldwide and under many different names. The use of recombinant EPOs for doping is prohibited because of its performance enhancing effect. The aim of the present study was to investigated whether biosimilar alpha r-HuEPO – ior®-EPOCIM, produced in Cuba and also available in other countries in all continents, could be differentiated from endogenous one by iso-electro-focusing plus double blotting, SDS-PAGE and SAR-PAGE for antidoping analysis.
Resumo:
Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Helicobacter pylori infection represents a serious health problem, given its association with serious gastric diseases as gastric ulcers, cancer and MALT lymphoma. Currently no vaccine exists and antibiotic-based eradication therapy is already failing in more than 20% of cases. To increase the knowledge on the infection process diverse gastric cell lines, e.g. the adenocarcinona gastric (AGS) cell line, are routinely used has in vitro models of gastric epithelia. In the present work the molecular fingerprint of infected and non-infected AGS cell lines, by diverse H. pylori strains, was acquired using vibrational infrared spectroscopy. These molecular fingerprints enabled to discriminate infected from non-infected AGS cells, and infection due to different strains, by performing Principal Component Analysis. It was also possible to estimate, from the AGS cells molecular fingerprint, the effect of the infection on diverse biochemical and metabolic cellular status. In resume infra-red spectroscopy enabled the acquisition of infected AGS cells molecular fingerprint with minimal sample preparation, in a rapid, high-throughput, economic process yielding highly sensitive and informative data, most useful for promoting critical knowledge on the H. pylori infection process. © 2015 IEEE.
Resumo:
Isoniazid (INH) is still one of the two most effective antitubercular drugs and is included in all recommended multitherapeutic regimens. Because of the increasing resistance of Mycobacterium tuberculosis to INH, mainly associated with mutations in the katG gene, new INH-based compounds have been proposed to circumvent this problem. In this work, we present a detailed comparative study of the molecular determinants of the interactions between wt KatG or its S315T mutant form and either INH or INH-C10, a new acylated INH derivative. MD simulations were used to explore the conformational space of both proteins, and results indicate that the S315T mutation did not have a significant impact on the average size of the access tunnel in the vicinity of these residues. Our simulations also indicate that the steric hindrance role assigned to Asp137 is transient and that electrostatic changes can be important in understanding the enzyme activity data of mutations in KatG. Additionally, molecular docking studies were used to determine the preferred modes of binding of the two substrates. Upon mutation, the apparently less favored docking solution for reaction became the most abundant, suggesting that S315T mutation favors less optimal binding modes. Moreover, the aliphatic tail in INH-C10 seems to bring the hydrazine group closer to the heme, thus favoring the apparent most reactive binding mode, regardless of the enzyme form. The ITC data is in agreement with our interpretation of the C10 alkyl chain role and helped to rationalize the significantly lower experimental MIC value observed for INH-C10. This compound seems to be able to counterbalance most of the conformational restrictions introduced by the mutation, which are thought to be responsible for the decrease in INH activity in the mutated strain. Therefore, INH-C10 appears to be a very promising lead compound for drug development.