20 resultados para MOSFET switches
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestrado em Engenharia Electrónica e Telecomunicações
Resumo:
This paper deals with a hierarchical structure composed by an event-based supervisor in a higher level and two distinct proportional integral (PI) controllers in a lower level. The controllers are applied to a variable speed wind energy conversion system with doubly-fed induction generator, namely, the fuzzy PI control and the fractional-order PI control. The event-based supervisor analyses the operation state of the wind energy conversion system among four possible operational states: park, start-up, generating or brake and sends the operation state to the controllers in the lower level. In start-up state, the controllers only act on electric torque while pitch angle is equal to zero. In generating state, the controllers must act on the pitch angle of the blades in order to maintain the electric power around the nominal value, thus ensuring that the safety conditions required for integration in the electric grid are met. Comparisons between fuzzy PI and fractional-order PI pitch controllers applied to a wind turbine benchmark model are given and simulation results by Matlab/Simulink are shown. From the results regarding the closed loop point of view, fuzzy PI controller allows a smoother response at the expense of larger number of variations of the pitch angle, implying frequent switches between operational states. On the other hand fractional-order PI controller allows an oscillatory response with less control effort, reducing switches between operational states. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The preliminary results from a bipolar industrial solidstate based Marx generator, developed for the food industry, capable of delivering 25 kV/250 A positive and negative pulses with 12 kW average power, are presented and discussed. This modular topology uses only four controlled switches per cell, 27 cells in total that can be charged up to 1000V each, the two extra cells are used for droop compensation. The triggering signals for all the switches are generated by a FPGA. Considering that biomaterials are similar to resistive type loads, experimental results from this new bipolar 25 kV modulator into resistive loads are presented and discussed.
Resumo:
This paper shows several ways to analyse the performance of a safety barrier, depending on the objective to be achieved and present a method to analyse binary components usually present on sensor systems of safety barriers. An application example of a water-based fire system is presented and the Probability of Failure on Demand (PFD) of the sensor system is determined based on the analysis of pressure switches installed in this safety barrier. The knowledge of such information will allow the determination of safety barrier’s availability.