31 resultados para Low cost piezoelectric sensor
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial
Resumo:
The study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials. In this paper we present an accessible, albeit versatile toolkit, composed of low-cost hardware and software, which was created to reinforce the engagement of different people in the field of biosignals. The hardware consists of a modular wireless biosignal acquisition system that can be used to support classroom activities, interface with other devices, or perform rapid prototyping of end-user applications. The software comprehends a set of programming APIs, a biosignal processing toolbox, and a framework for real time data acquisition and postprocessing. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Applications involving biosignals, such as Electrocardiography (ECG), are becoming more pervasive with the extension towards non-intrusive scenarios helping targeting ambulatory healthcare monitoring, emotion assessment, among many others. In this study we introduce a new type of silver/silver chloride (Ag/AgCl) electrodes based on a paper substrate and produced using an inkjet printing technique. This type of electrodes can increase the potential applications of biosignal acquisition technologies for everyday life use, given that there are several advantages, such as cost reduction and easier recycling, resultant from the approach explored in our work. We performed a comparison study to assess the quality of this new electrode type, in which ECG data was collected with three types of Ag/AgCl electrodes: i) gelled; ii) dry iii) paper-based inkjet printed. We also compared the performance of each electrode when acquired using a professional-grade gold standard device, and a low cost platform. Experimental results showed that data acquired using our proposed inkjet printed electrode is highly correlated with data obtained through conventional electrodes. Moreover, the electrodes are robust to high-end and low-end data acquisition devices. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
Physical computing has spun a true global revolution in the way in which the digital interfaces with the real world. From bicycle jackets with turn signal lights to twitter-controlled christmas trees, the Do-it-Yourself (DiY) hardware movement has been driving endless innovations and stimulating an age of creative engineering. This ongoing (r)evolution has been led by popular electronics platforms such as the Arduino, the Lilypad, or the Raspberry Pi, however, these are not designed taking into account the specific requirements of biosignal acquisition. To date, the physiological computing community has been severely lacking a parallel to that found in the DiY electronics realm, especially in what concerns suitable hardware frameworks. In this paper, we build on previous work developed within our group, focusing on an all-in-one, low-cost, and modular biosignal acquisition hardware platform, that makes it quicker and easier to build biomedical devices. We describe the main design considerations, experimental evaluation and circuit characterization results, together with the results from a usability study performed with volunteers from multiple target user groups, namely health sciences and electrical, biomedical, and computer engineering. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
This paper presents a novel phase correction technique for Passive Radar which uses targets of opportunity present in the target area as references. The proposed methodology is quite simple and enables the use of low cost hardware with independent oscillators for the reference and surveillance channels which can be geographically distributed. © 2014 IEEE.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Wireless networks have joined to the sports venues, offering to the public a set of facilities, such as the access to email, news, and also to use the social networking, uploading their photos. New challenges have emerged to provide Wi-Fi in this densely populated stadiums, such as increasing capacity and coverage. In this article, an access point antenna array to cover a sector of a stadium is presented. Its structure, designed in a low cost material allows to reduce the total manufacturing costs, an important factor due to the large number of antennas required in these venues. The material characteristic, the broad bandwidth of operation (300 MHz), along with to the low side lobe levels, important to reduce interference between sectors, makes this antenna well-positioned for wireless communications in these particular locals. (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2037-2041, 2015.
Resumo:
Trabalho de projeto apresentado à Escola Superior de Comunicação Social como parte dos requisitos para obtenção de grau de mestre em Publicidade e Marketing.
Resumo:
Partial dynamic reconfiguration of FPGAs can be used to implement complex applications using the concept of virtual hardware. In this work we have used partial dynamic reconfiguration to implement a JPEG decoder with reduced area. The image decoding process was adapted to be implemented on the FPGA fabric using this technique. The architecture was tested in a low cost ZYNQ-7020 FPGA that supports dynamic reconfiguration. The results show that the proposed solution needs only 40% of the resources utilized by a static implementation. The performance of the dynamic solution is about 9X slower than the static solution by trading-off internal resources of the FPGA. A throughput of 7 images per second is achievable with the proposed partial dynamic reconfiguration solution.
Resumo:
This work introduces a novel idea for wireless energy transfer, proposing for the first time the unit-cell of an indoor localization and RF harvesting system embedded into the floor. The unit-cell is composed by a 5.8 GHz patch antenna surrounded by a 13.56 MHz coil. The coil locates a device and activate the patch which, connected to a power grid, radiates to wirelessly charge the localized device. The HF and RF circuits co-existence and functionality are demonstrated in this paper, the novelty of which is also in the adoption of low cost and most of all ecofriendly materials, such as wood and cork, as substrates for electronics.
Resumo:
Wireless communications had a great development in the last years and nowadays they are present everywhere, public and private, being increasingly used for different applications. Their application in the business of sports events as a means to improve the experience of the fans at the games is becoming essential, such as sharing messages and multimedia material on social networks. In the stadiums, given the high density of people, the wireless networks require very large data capacity. Hence radio coverage employing many small sized sectors is unavoidable. In this paper, an antenna is designed to operate in the Wi-Fi 5GHz frequency band, with a directive radiation pattern suitable to this kind of applications. Furthermore, despite the large bandwidth and low losses, this antenna has been developed using low cost, off-the-shelf materials without sacrificing quality or performance, essential to mass production. © 2015 EurAAP.
Resumo:
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.