27 resultados para Liability of Manufacturers for Goods with Safety Defects
Resumo:
The didactic update on requirements, types of feeding and dosages of nutrients by Su is a useful guide for clinicians on optimization of nutrition in preterm infants. We take this opportunity to focus on postdischarge nutrition in very preterm infants, which has not yet reached consensus, because of concerns regarding the potentially negative consequences of rapid catch-up growth on obesity and metabolic programming. Some formula feeding approaches have been proposed when mother’s milk is not available.
Resumo:
We consider a fiber made of a soft elastic material, encased in a stiff elastic shell (core-shell geometry). If the core and shell dimensions are mismatched, e.g., because the core shrinks while the shell does not, but the two remain attached, then an elastic instability is triggered whereby wrinkles may appear on the shell. The wrinkle orientation may be longitudinal (along the fiber axis), polar (along the fiber perimeter), or a mixture of both, depending on the fiber's geometrical and material parameters. Here we investigate under what conditions longitudinal or polar wrinkling will occur.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
The disturbing emergence of multidrug-resistant strains of Mycobacterium tuberculosis (Mtb) has been driving the scientific community to urgently search for new and efficient antitubercular drugs. Despite the various drugs currently under evaluation, isoniazid is still the key and most effective component in all multi-therapeutic regimens recommended by the WHO. This paper describes the QSAR-oriented design, synthesis and in vitro antitubercular activity of several potent isoniazid derivatives (isonicotinoyl hydrazones and isonicotinoyl hydrazides) against H37Rv and two resistant Mtb strains. QSAR studies entailed RFs and ASNNs classification models, as well as MLR models. Strict validation procedures were used to guarantee the models' robustness and predictive ability. Lipophilicity was shown not to be relevant to explain the activity of these derivatives, whereas shorter N-N distances and lengthy substituents lead to more active compounds. Compounds I, 2, 4, 5 and 6, showed measured activities against H37Rv higher than INH (i.e., MIC <= 0.28 mu M), while compound 9 exhibited a six fold decrease in MIC against the katG (S315T) mutated strain, by comparison with INH (Le., 6.9 vs. 43.8 mu M). All compounds were ineffective against H37Rv(INH) (Delta katG), a strain with a full deletion of the katG gene, thus corroborating the importance of KatG in the activation of INH-based compounds. The most potent compounds were also shown not to be cytotoxic up to a concentration 500 times higher than MIC. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This work studies the effect of incorporating fine recycled aggregates on the rheology of self-compacting concrete over time (at 15,45 and 90 min). The fine fraction of the natural aggregates was replaced at 0%, 20%, 50% and 100% with recycled sand. The fresh-state properties were studied by empirical tests (slump-flow, J-Ring, L-Box) and fundamental ones in an ICAR rheometer. The mixes with 50% and 100% recycled sand lost their SCC characteristics at 90 min. Contrarily the mix with 20% replacement maintained suitable passing and filling ability. The causes of this trend were an initial increase of plastic viscosity and afterwards an increase of yield stress. The compressive strength of the 50% and 100% replacement mixes decreased significantly and that of the 20% replacement mix less than 10%. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
In this paper we investigate some classes of semigroup rings with respect to (semi)primeness and (semi)primitivity. We do so by extending the techniques developed by Munn in (Proc R Soc Edinbur Sect A 107:175-196, 1987) and (Proc R Soc Edinbur Sect A 115:109-117, 1990) for the study of semigroup rings of inverse semigroups. Restriction, weakly ample and ample semigroups are considered.
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.