21 resultados para Ionic liquid, Lignocellulosics, Sugarcane bagasse, Pretreatment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports a recently developed electro-optical (EO) device that can potentially be used as a light shutter or a privacy window. By using nanocrystalline cellulose rods, we were able to improve some of the most relevant parameters characterising the EO behaviour. A brief description of the proposed working mechanism for these devices is presented, and numerical simulations based on this mechanism of both the optical transmission and the cells' electrical capacitance are compared with the obtained results, validating the underlying working model considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.