22 resultados para Integer order control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a distributed model predictive control (DMPC) for indoor thermal comfort that simultaneously optimizes the consumption of a limited shared energy resource. The control objective of each subsystem is to minimize the heating/cooling energy cost while maintaining the indoor temperature and used power inside bounds. In a distributed coordinated environment, the control uses multiple dynamically decoupled agents (one for each subsystem/house) aiming to achieve satisfaction of coupling constraints. According to the hourly power demand profile, each house assigns a priority level that indicates how much is willing to bid in auction for consume the limited clean resource. This procedure allows the bidding value vary hourly and consequently, the agents order to access to the clean energy also varies. Despite of power constraints, all houses have also thermal comfort constraints that must be fulfilled. The system is simulated with several houses in a distributed environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article addresses the problem of obtaining reduced complexity models of multi-reach water delivery canals that are suitable for robust and linear parameter varying (LPV) control design. In the first stage, by applying a method known from the literature, a finite dimensional rational transfer function of a priori defined order is obtained for each canal reach by linearizing the Saint-Venant equations. Then, by using block diagrams algebra, these different models are combined with linearized gate models in order to obtain the overall canal model. In what concerns the control design objectives, this approach has the advantages of providing a model with prescribed order and to quantify the high frequency uncertainty due to model approximation. A case study with a 3-reach canal is presented, and the resulting model is compared with experimental data. © 2014 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scope of study: welding operations result in harmful emissions of nanoparticles; the aim of emissions monitorisation is to evaluate exposure levels and to derive protection measures in order to protect exposed workers; however, the traditional approach of comparing measured concentrations with exposure limits cannot be used; but risk levels can be quantified by using Control Banding Strategies.