19 resultados para Gas-dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes preliminary work on the generation of synthesis gas from water electrolysis using graphite electrodes without the separation of the generated gases. This is an innovative process, that has no similar work been done earlier. Preliminary tests allowed to establish correlations between the applied current to the electrolyser and flow rate and composition of the generated syngas, as well as a characterisation of generated carbon nanoparticles. The obtained syngas can further be used to produce synthetic liquid fuels, for example, methane, methanol or DME (dimethyl ether) in a catalytic reactor, in further stages of a present ongoing project, using the ELECTROFUEL® concept. The main competitive advantage of this project lies in the built-in of an innovative technology product, from RE (renewable energy) power in remote locations, for example, islands, villages in mountains as an alternative for energy storage for mobility constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.