20 resultados para Funnel chest
Resumo:
Introduction: The purpose of this review is to gather and analyse current research publications to evaluate Sinogram-Affirmed Iterative Reconstruction (SAFIRE). The aim of this review is to investigate whether this algorithm is capable of reducing the dose delivered during CT imaging while maintaining image quality. Recent research shows that children have a greater risk per unit dose due to increased radiosensitivity and longer life expectancies, which means it is particularly important to reduce the radiation dose received by children. Discussion: Recent publications suggest that SAFIRE is capable of reducing image noise in CT images, thereby enabling the potential to reduce dose. Some publications suggest a decrease in dose, by up to 64% compared to filtered back projection, can be accomplished without a change in image quality. However, literature suggests that using a higher SAFIRE strength may alter the image texture, creating an overly ‘smoothed’ image that lacks contrast. Some literature reports SAFIRE gives decreased low contrast detectability as well as spatial resolution. Publications tend to agree that SAFIRE strength three is optimal for an acceptable level of visual image quality, but more research is required. The importance of creating a balance between dose reduction and image quality is stressed. In this literature review most of the publications were completed using adults or phantoms, and a distinct lack of literature for paediatric patients is noted. Conclusion: It is necessary to find an optimal way to balance dose reduction and image quality. More research relating to SAFIRE and paediatric patients is required to fully investigate dose reduction potential in this population, for a range of different SAFIRE strengths.
Resumo:
Diaphragm is the principal inspiratory muscle. Different techniques have been used to assess diaphragm motion. Among them, M-mode ultrasound has gain particular interest since it is non-invasive and accessible. However it is operator-dependent and no objective acquisition protocol has been established. Purpose: to establish a reliable method for the assessment of the diaphragmatic motion via the M-mode ultrasound.
Resumo:
COPD is a major cause of morbidity and mortality worldwide, representing a major public health problem due to the high health and economic resource consumption. Pulmonary rehabilitation is a standard care recommendation for these patients, in order to control the symptoms and optimize the functional capacity, reducing health care costs associated with exacerbations and activity limitations and participation. However, in patients with severe COPD exercise performance can be difficult, due to extreme dyspnea, decreased muscle strength and fatigue. In addition, hypoxemia and dyspnea during efforts and daily activities may occur, limiting their quality of life. Thus, NIV have been used as adjunct to exercise, in order to improve exercise capacity in these patients. However, there is no consensus for this technique recommendation. Our objective was to verify whether the use of NIV during exercise is effective than exercise without NIV in dyspnea, walked distance, blood gases and health status in COPD patients, through a systematic review and meta-analysis.
Resumo:
The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.