34 resultados para Functional Architecture
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
Portugal has an accentuated aging tendency, presenting an elderly population (individuals with more than 65 years old) of 19.2%. The average life expectancy is 79.2 years. Thus, it’s important to maintain autonomy and independency as long as possible. Functional ability concept rises from the need to evaluate the capacity to conduct daily activities in an independent way. It can be estimated with the 6-minute walk test (6MWT) and other validated test. This test is simple, reliable, valid and consists in a daily activity (walk). The goals of this study was to verify associations between functional capacity measured with two different instruments (6MWT and Composite Physical Function (CPF) scale) and between those results and characterization variables.
Resumo:
Myocardial perfusion gated-single photon emission computed tomography (gated-SPECT) imaging is used for the combined evaluation of myocardial perfusion and left ventricular (LV) function. The aim of this study is to analyze the influence of counts/pixel and concomitantly the total counts in the myocardium for the calculation of myocardial functional parameters. Material and methods: Gated-SPECT studies were performed using a Monte Carlo GATE simulation package and the NCAT phantom. The simulations of these studies use the radiopharmaceutical 99mTc-labeled tracers (250, 350, 450 and 680MBq) for standard patient types, effectively corresponding to the following activities of myocardium: 3, 4.2, 5.4-8.2MBq. All studies were simulated using 15 and 30s/projection. The simulated data were reconstructed and processed by quantitative-gated-SPECT software, and the analysis of functional parameters in gated-SPECT images was done by using Bland-Altman test and Mann-Whitney-Wilcoxon test. Results: In studies simulated using different times (15 and 30s/projection), it was noted that for the activities for full body: 250 and 350MBq, there were statistically significant differences in parameters Motility and Thickness. For the left ventricular ejection fraction (LVEF), end-systolic volume (ESV) it was only for 250MBq, and 350MBq in the end-diastolic volume (EDV), while the simulated studies with 450 and 680MBq showed no statistically significant differences for global functional parameters: LVEF, EDV and ESV. Conclusion: The number of counts/pixel and, concomitantly, the total counts per simulation do not significantly interfere with the determination of gated-SPECT functional parameters, when using the administered average activity of 450MBq, corresponding to the 5.4MBq of the myocardium, for standard patient types.
Resumo:
This paper proposes an efficient scalable Residue Number System (RNS) architecture supporting moduli sets with an arbitrary number of channels, allowing to achieve larger dynamic range and a higher level of parallelism. The proposed architecture allows the forward and reverse RNS conversion, by reusing the arithmetic channel units. The arithmetic operations supported at the channel level include addition, subtraction, and multiplication with accumulation capability. For the reverse conversion two algorithms are considered, one based on the Chinese Remainder Theorem and the other one on Mixed-Radix-Conversion, leading to implementations optimized for delay and required circuit area. With the proposed architecture a complete and compact RNS platform is achieved. Experimental results suggest gains of 17 % in the delay in the arithmetic operations, with an area reduction of 23 % regarding the RNS state of the art. When compared with a binary system the proposed architecture allows to perform the same computation 20 times faster alongside with only 10 % of the circuit area resources.
Resumo:
A noncoherent vector delay/frequency-locked loop (VDFLL) architecture for GNSS receivers is proposed. A bank of code and frequency discriminators feeds a central extended Kalman filter that estimates the receiver's position and velocity, besides the clock error. The VDFLL architecture performance is compared with the one of the classic scalar receiver, both for scintillation and multipath scenarios, in terms of position errors. We show that the proposed solution is superior to the conventional scalar receivers, which tend to lose lock rapidly, due to the sudden drops of the received signal power.
Resumo:
Locomotor tasks characterization plays an important role in trying to improve the quality of life of a growing elderly population. This paper focuses on this matter by trying to characterize the locomotion of two population groups with different functional fitness levels (high or low) while executing three different tasks-gait, stair ascent and stair descent. Features were extracted from gait data, and feature selection methods were used in order to get the set of features that allow differentiation between functional fitness level. Unsupervised learning was used to validate the sets obtained and, ultimately, indicated that it is possible to distinguish the two population groups. The sets of best discriminate features for each task are identified and thoroughly analysed. Copyright © 2014 SCITEPRESS - Science and Technology Publications. All rights reserved.
Resumo:
A unified architecture for fast and efficient computation of the set of two-dimensional (2-D) transforms adopted by the most recent state-of-the-art digital video standards is presented in this paper. Contrasting to other designs with similar functionality, the presented architecture is supported on a scalable, modular and completely configurable processing structure. This flexible structure not only allows to easily reconfigure the architecture to support different transform kernels, but it also permits its resizing to efficiently support transforms of different orders (e. g. order-4, order-8, order-16 and order-32). Consequently, not only is it highly suitable to realize high-performance multi-standard transform cores, but it also offers highly efficient implementations of specialized processing structures addressing only a reduced subset of transforms that are used by a specific video standard. The experimental results that were obtained by prototyping several configurations of this processing structure in a Xilinx Virtex-7 FPGA show the superior performance and hardware efficiency levels provided by the proposed unified architecture for the implementation of transform cores for the Advanced Video Coding (AVC), Audio Video coding Standard (AVS), VC-1 and High Efficiency Video Coding (HEVC) standards. In addition, such results also demonstrate the ability of this processing structure to realize multi-standard transform cores supporting all the standards mentioned above and that are capable of processing the 8k Ultra High Definition Television (UHDTV) video format (7,680 x 4,320 at 30 fps) in real time.
Resumo:
This paper presents a layered Smart Grid architecture enhancing security and reliability, having the ability to act in order to maintain and correct infrastructure components without affecting the client service. The architecture presented is based in the core of well design software engineering, standing upon standards developed over the years. The layered Smart Grid offers a base tool to ease new standards and energy policies implementation. The ZigBee technology implementation test methodology for the Smart Grid is presented, and provides field tests using ZigBee technology to control the new Smart Grid architecture approach. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a multifunctional architecture to implement field-programmable gate array (FPGA) controllers for power converters and presents a prototype for a pulsed power generator based on a solid-state Marx topology. The massively parallel nature of reconfigurable hardware platforms provides very high processing power and fast response times allowing the implementation of many subsystems in the same device. The prototype includes the controller, a failure detection system, an interface with a safety/emergency subsystem, a graphical user interface, and a virtual oscilloscope to visualize the generated pulse waveforms, using a single FPGA. The proposed architecture employs a modular design that can be easily adapted to other power converter topologies.
Resumo:
Aims of study: 1) Describe the importance of human visual system on lesion detection in medical imaging perception research; 2) Discuss the relevance of research in medical imaging addressing visual function analysis; 3) Identify visual function tests which could be conducted on observers prior to participation in medical imaging perception research.
Resumo:
A non-coherent vector delay/frequency-locked loop architecture for GNSS receivers is proposed. Two dynamics models are considered: PV (position and velocity) and PVA (position, velocity, and acceleration). In contrast with other vector architectures, the proposed approach does not require the estimation of signals amplitudes. Only coarse estimates of the carrier-to-noise ratios are necessary.
Resumo:
In this article, physical layer awareness in access, core, and metro networks is addressed, and a Physical Layer Aware Network Architecture Framework for the Future Internet is presented and discussed, as proposed within the framework of the European ICT Project 4WARD. Current limitations and shortcomings of the Internet architecture are driving research trends at a global scale toward a novel, secure, and flexible architecture. This Future Internet architecture must allow for the co-existence and cooperation of multiple networks on common platforms, through the virtualization of network resources. Possible solutions embrace a full range of technologies, from fiber backbones to wireless access networks. The virtualization of physical networking resources will enhance the possibility of handling different profiles, while providing the impression of mutual isolation. This abstraction strategy implies the use of well elaborated mechanisms in order to deal with channel impairments and requirements, in both wireless (access) and optical (core) environments.
Resumo:
The activity and selectivity of bi-functional carbon-supported platinum catalysts for the hydroisomerization of n-alkanes have been studied. The influence of the properties of the carbon support on the performance of the catalysts were investigated by incorporating the metallic function on a series of carbons with varied porosity (microporous: GL-50 from Norit, and mesoporous: CMK-3) and surface chemistry (modified by wet oxidation). The characterization results achieved with H-2 chemisorption and TEM showed differences in surface metal concentrations and metal-support interactions depending on the support composition. The highest metal dispersion was achieved after oxidation of the carbon matrix in concentrated nitric acid, suggesting that the presence of surface functional sites distributed in inner and outer surface favors a homogeneous metal distribution. On the other hand, the higher hydrogenating activity of the catalysts prepared with the mesoporous carbon pointed out that a fast molecular traffic inside the pores plays an important role in the catalysts performance. For n-decane hydroisomerization of long chain n-alkanes, higher activities were obtained for the catalysts with an optimized acidity and metal dispersion along with adequate porosity, pointing out the importance of the support properties in the performance of the catalysts.
Resumo:
We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime.
Resumo:
Thesis to obtain the Master of Science Degree in Computer Science and Engineering