17 resultados para Empirical orthogonal functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent papers, the authors obtained formulas for directional derivatives of all orders, of the immanant and of the m-th xi-symmetric tensor power of an operator and a matrix, when xi is a character of the full symmetric group. The operator norm of these derivatives was also calculated. In this paper, similar results are established for generalized matrix functions and for every symmetric tensor power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As it is widely known, in structural dynamic applications, ranging from structural coupling to model updating, the incompatibility between measured and simulated data is inevitable, due to the problem of coordinate incompleteness. Usually, the experimental data from conventional vibration testing is collected at a few translational degrees of freedom (DOF) due to applied forces, using hammer or shaker exciters, over a limited frequency range. Hence, one can only measure a portion of the receptance matrix, few columns, related to the forced DOFs, and rows, related to the measured DOFs. In contrast, by finite element modeling, one can obtain a full data set, both in terms of DOFs and identified modes. Over the years, several model reduction techniques have been proposed, as well as data expansion ones. However, the latter are significantly fewer and the demand for efficient techniques is still an issue. In this work, one proposes a technique for expanding measured frequency response functions (FRF) over the entire set of DOFs. This technique is based upon a modified Kidder's method and the principle of reciprocity, and it avoids the need for modal identification, as it uses the measured FRFs directly. In order to illustrate the performance of the proposed technique, a set of simulated experimental translational FRFs is taken as reference to estimate rotational FRFs, including those that are due to applied moments.