27 resultados para Distributed sensing
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON) - NOV 10-14, 2013
Resumo:
This paper presents a distributed predictive control methodology for indoor thermal comfort that optimizes the consumption of a limited shared energy resource using an integrated demand-side management approach that involves a power price auction and an appliance loads allocation scheme. The control objective for each subsystem (house or building) aims to minimize the energy cost while maintaining the indoor temperature inside comfort limits. In a distributed coordinated multi-agent ecosystem, each house or building control agent achieves its objectives while sharing, among them, the available energy through the introduction of particular coupling constraints in their underlying optimization problem. Coordination is maintained by a daily green energy auction bring in a demand-side management approach. Also the implemented distributed MPC algorithm is described and validated with simulation studies.
Resumo:
The growing heterogeneity of networks, devices and consumption conditions asks for flexible and adaptive video coding solutions. The compression power of the HEVC standard and the benefits of the distributed video coding paradigm allow designing novel scalable coding solutions with improved error robustness and low encoding complexity while still achieving competitive compression efficiency. In this context, this paper proposes a novel scalable video coding scheme using a HEVC Intra compliant base layer and a distributed coding approach in the enhancement layers (EL). This design inherits the HEVC compression efficiency while providing low encoding complexity at the enhancement layers. The temporal correlation is exploited at the decoder to create the EL side information (SI) residue, an estimation of the original residue. The EL encoder sends only the data that cannot be inferred at the decoder, thus exploiting the correlation between the original and SI residues; however, this correlation must be characterized with an accurate correlation model to obtain coding efficiency improvements. Therefore, this paper proposes a correlation modeling solution to be used at both encoder and decoder, without requiring a feedback channel. Experiments results confirm that the proposed scalable coding scheme has lower encoding complexity and provides BD-Rate savings up to 3.43% in comparison with the HEVC Intra scalable extension under development. © 2014 IEEE.
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a novel phase correction technique for Passive Radar which uses targets of opportunity present in the target area as references. The proposed methodology is quite simple and enables the use of low cost hardware with independent oscillators for the reference and surveillance channels which can be geographically distributed. © 2014 IEEE.
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).
Resumo:
This paper proposes the concept of multi-asynchronous-channel for Petri nets. Petri nets extended with multi-asynchronous-channels and time-domains support the specification of distributed controllers, where each controller has a synchronous execution but the global system is asynchronous (globally-asynchronous locally-synchronous systems). Each multi-asynchronous-channel specify the interaction between two or more distributed controllers. These channels, together with the time-domain concept, ensure the creation of network-independent models to support implementations using heterogeneous communication networks. The created models support not only the systems documentation but also their validation and implementation through simulation tools, verification tools, and automatic code generators. An application example illustrates the use of a Petri net class extended with the proposed channels. © 2015 IEEE.
Resumo:
This paper presents a new parallel implementation of a previously hyperspectral coded aperture (HYCA) algorithm for compressive sensing on graphics processing units (GPUs). HYCA method combines the ideas of spectral unmixing and compressive sensing exploiting the high spatial correlation that can be observed in the data and the generally low number of endmembers needed in order to explain the data. The proposed implementation exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs using shared memory and coalesced accesses to memory. The proposed algorithm is evaluated not only in terms of reconstruction error but also in terms of computational performance using two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN. Experimental results using real data reveals signficant speedups up with regards to serial implementation.
Resumo:
The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.
Resumo:
Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.
Resumo:
The application of compressive sensing (CS) to hyperspectral images is an active area of research over the past few years, both in terms of the hardware and the signal processing algorithms. However, CS algorithms can be computationally very expensive due to the extremely large volumes of data collected by imaging spectrometers, a fact that compromises their use in applications under real-time constraints. This paper proposes four efficient implementations of hyperspectral coded aperture (HYCA) for CS, two of them termed P-HYCA and P-HYCA-FAST and two additional implementations for its constrained version (CHYCA), termed P-CHYCA and P-CHYCA-FAST on commodity graphics processing units (GPUs). HYCA algorithm exploits the high correlation existing among the spectral bands of the hyperspectral data sets and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. The proposed P-HYCA and P-CHYCA implementations have been developed using the compute unified device architecture (CUDA) and the cuFFT library. Moreover, this library has been replaced by a fast iterative method in the P-HYCA-FAST and P-CHYCA-FAST implementations that leads to very significant speedup factors in order to achieve real-time requirements. The proposed algorithms are evaluated not only in terms of reconstruction error for different compressions ratios but also in terms of computational performance using two different GPU architectures by NVIDIA: 1) GeForce GTX 590; and 2) GeForce GTX TITAN. Experiments are conducted using both simulated and real data revealing considerable acceleration factors and obtaining good results in the task of compressing remotely sensed hyperspectral data sets.
Resumo:
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.