22 resultados para Constituent process of 1988
Resumo:
Trabalho de Projecto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Desenvolvimento de Projecto Cinematográfico – Narrativas Cinematográficas
Resumo:
Mg alloys are very susceptible to corrosion in physiological media. This behaviour limits its widespread use in biomedical applications as bioresorbable implants, but it can be controlled by applying protective coatings. On one hand, coatings must delay and control the degradation process of the bare alloy and, on the other hand, they must be functional and biocompatible. In this study a biocompatible polycaprolactone (PCL) coating was functionalised with nano hydroxyapatite (HA) particles for enhanced biocompatibility and with an antibiotic, cephalexin, for anti-bacterial purposes and applied on the AZ31 alloy. The chemical composition and the surface morphology of the coated samples, before and after the corrosion tests, were studied by scanning electron microscopy (SEM) coupled with energy dispersive x-ray analysis (EDX) and Raman. The results showed that the presence of additives induced the formation of agglomerates and defects in the coating that resulted in the formation of pores during immersion in Hanks' solution. The corrosion resistance of the coated samples was studied in Hank's solution by electrochemical impedance spectroscopy (EIS). The results evidenced that all the coatings can provide corrosion protection of the bare alloy. However, in the presence of the additives, corrosion protection decreased. The wetting behaviour of the coating was evaluated by the static contact angle method and it was found that the presence of both hydroxyapatite and cephalexin increased the hydrophilic behaviour of the surface. The results showed that it is possible to tailor a composite coating that can store an antibiotic and nano hydroxyapatite particles, while allowing to control the in-vitro corrosion degradation of the bioresorbable Mg alloy AZ31. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Trabalho de Projecto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro - especialização em Encenação.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
Biomaterials have been extensively developed and applied in medical devices. Among these materials, bioabsorbable polymers have attracted special attention for orthopedic applications where a transient existence of an implant can provide better results, when compared with permanent implants. Chitosan, a natural biopolymer, has generated enormous interest due to its various advantages such as biocompatibility, biodegradability and osteoconductive properties. In this paper, an assessment of the potential of a developed innovative production process of 3D solid and dense chitosan-based products for biomedical applications is performed and presented. Therefore, it starts with a brief explanation of the technology, highlighting its main features. Then, several potential applications and their markets were identified and assessed. After choosing a primary application and market, its potential as well as its uncertainties and risks were identified. A business model suggesting how to materialize the value from the application was sketched. After that, a brief description of the market as well as the identification of the main competitors and their distinctive features was made. The supply chain analysis and the go-to-market strategy were the following steps. In the end, a final recommendation based on the assessment of the information was prepared.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic processwithout a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the teaching and learning process in mathematics but has been used in other disciplinary fields. It will be used in this work in order to clear up the main obstacles in the teachinglearning process of geometric optics. We proceed to argue that since Newton’s approach to optics, in his Book I of Opticks, is independent of the corpuscular or undulatory nature of light, it is the most suitable for a constructivist learning environment. However, Newton’s theory must be subject to a proper didactic transposition to help overcome the referred alternative concepts. Then is described our didactic transposition in order to create knowledge to be taught using a dialogical process between students’ previous knowledge, history of optics and the desired outcomes on geometrical optics in an elementary pre-service teacher training course. Finally, we use the scheme-facet structure of knowledge both to analyse and discuss our results as well as to illuminate shortcomings that must be addressed in our next stage of the inquiry.