29 resultados para Capacity expansion costs
Resumo:
The hand is one of the most important instruments of the human body, mainly due to the possibility of grip movements. Grip strength has been described as an important predictor of functional capacity. There are several factors that may influence it, such as gender, age and anthropometric characteristics. Functional capacity refers to the ability to perform daily activities which allow the individual to self-care and to live with autonomy. Composite Physical Function (CPF) scale is an evaluation tool for functional capacity that includes daily activities, self-care, sports activities, upper limb function and gait capacity. In 2011, Portugal had 15% of young population (0-14years) and 19% of elderly population (over 65 years). Considering the double-ageing phenomen, it is important to understand the effect of the grip strength in elderly individuals, considering their characteristics, as the need to maintainin dependency as long as possible.
Resumo:
Dissertação de natureza Científica para obtenção do grau de Mestre na Área de Especialização de Estruturas
Resumo:
Mestrado em Fisioterapia
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Portugal has an accentuated aging tendency, presenting an elderly population (individuals with more than 65 years old) of 19.2%. The average life expectancy is 79.2 years. Thus, it’s important to maintain autonomy and independency as long as possible. Functional ability concept rises from the need to evaluate the capacity to conduct daily activities in an independent way. It can be estimated with the 6-minute walk test (6MWT) and other validated test. This test is simple, reliable, valid and consists in a daily activity (walk). The goals of this study was to verify associations between functional capacity measured with two different instruments (6MWT and Composite Physical Function (CPF) scale) and between those results and characterization variables.
Resumo:
COPD is a major cause of morbidity and mortality worldwide, representing a major public health problem due to the high health and economic resource consumption. Pulmonary rehabilitation is a standard care recommendation for these patients, in order to control the symptoms and optimize the functional capacity, reducing health care costs associated with exacerbations and activity limitations and participation. However, in patients with severe COPD exercise performance can be difficult, due to extreme dyspnea, decreased muscle strength and fatigue. In addition, hypoxemia and dyspnea during efforts and daily activities may occur, limiting their quality of life. Thus, NIV have been used as adjunct to exercise, in order to improve exercise capacity in these patients. However, there is no consensus for this technique recommendation. Our objective was to verify whether the use of NIV during exercise is effective than exercise without NIV in dyspnea, walked distance, blood gases and health status in COPD patients, through a systematic review and meta-analysis.
Resumo:
Outlining the best strategies for seismic risk mitigation requires that both benefits and costs of retrofitting are known in advance. The assessment of the vulnerability of building typologies is a first step of a more extensive effort, concerning the analysis of the viability of seismic risk mitigation and taking into account retrofitting costs. The methodology adopted to obtain the seismic vulnerability of some classes of residential buildings existing in mainland Portugal is presented. This methodology is based on a structural analysis of individual buildings belonging to the same typology. An application example is presented to illustrate the methodology. Fragility curves of “boxed” building typology are also presented and broken down into three height classes: low rise, medium-rise and high-rise. These curves are based on average capacity spectra derived from several individual buildings belonging to the same typology.
Resumo:
The increasing integration of wind energy in power systems can be responsible for the occurrence of over-generation, especially during the off-peak periods. This paper presents a dedicated methodology to identify and quantify the occurrence of this over-generation and to evaluate some of the solutions that can be adopted to mitigate this problem. The methodology is applied to the Portuguese power system, in which the wind energy is expected to represent more than 25% of the installed capacity in a near future. The results show that the pumped-hydro units will not provide enough energy storage capacity and, therefore, wind curtailments are expected to occur in the Portuguese system. Additional energy storage devices can be implemented to offset the wind energy curtailments. However, the investment analysis performed show that they are not economically viable, due to the present high capital costs involved.
Resumo:
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs), which obtain their fuel from the grid by charging a battery, are set to be introduced into the mass market and expected to contribute to oil consumption reduction. This research is concerned with studying the potential impacts on the electric utilities of large-scale adoption of plug-in electric vehicles from the perspective of electricity demand, fossil fuels use, CO2 emissions and energy costs. Simulations were applied to the Portuguese case study in order to analyze what would be the optimal recharge profile and EV penetration in an energy-oriented, an emissions-oriented and a cost-oriented objective. The objectives considered were: The leveling of load profiles, minimization of daily emissions and minimization of daily wholesale costs. Almost all solutions point to an off-peak recharge and a 50% reduction in daily wholesale costs can be verified from a peak recharge scenario to an off-peak recharge for a 2 million EVs in 2020. A 15% improvement in the daily total wholesale costs can be verified in the costs minimization objective when compared with the off-peak scenario result.
Resumo:
Wireless networks have joined to the sports venues, offering to the public a set of facilities, such as the access to email, news, and also to use the social networking, uploading their photos. New challenges have emerged to provide Wi-Fi in this densely populated stadiums, such as increasing capacity and coverage. In this article, an access point antenna array to cover a sector of a stadium is presented. Its structure, designed in a low cost material allows to reduce the total manufacturing costs, an important factor due to the large number of antennas required in these venues. The material characteristic, the broad bandwidth of operation (300 MHz), along with to the low side lobe levels, important to reduce interference between sectors, makes this antenna well-positioned for wireless communications in these particular locals. (c) 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:2037-2041, 2015.
Resumo:
Within a large set of renewable energies being explored to tackle energy sourcing problems, bioenergy can represent an attractive solution if effectively managed. The supply chain design supported by mathematical programming can be used as a decision support tool to the successful bioenergy production systems establishment. This strategic decision problem is addressed in this paper where we intent to study the design of the residual forestry biomass to bioelectricity production in the Portuguese context. In order to contribute to attain better solutions a mixed integer linear programming (MILP) model is developed and applied in order to optimize the design and planning of the bioenergy supply chain. While minimizing the total supply chain cost the production energy facilities capacity and location are defined. The model also includes the optimal selection of biomass amounts and sources, the transportation modes selection, and links that must be established for biomass transportation and products delivers to markets. Results illustrate the positive contribution of the mathematical programming approach to achieve viable economic solutions. Sensitivity analysis on the most uncertain parameters was performed: biomass availability, transportation costs, fixed operating costs and investment costs. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell-based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex-vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi-analytical methods, some of them time-consuming. The present work evaluates the use of mid-infrared (MIR) spectroscopy, through rapid and economic high-throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno-free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes.
Resumo:
Dissertação para obtenção do grau de mestre em Engenharia Civil