19 resultados para Cantor subset
Resumo:
Trabalho de Projeto submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Teatro – especialização em Artes Performativas – Teatro Música.
Resumo:
Modular design is crucial to manage large-scale systems and to support the divide-and-conquer development approach. It allows hierarchical representations and, therefore, one can have a system overview, as well as observe component details. Petri nets are suitable to model concurrent systems, but lack on structuring mechanisms to support abstractions and the composition of sub-models, in particular when considering applications to embedded controllers design. In this paper we present a module construct, and an underlying high-level Petri net type, to model embedded controllers. Multiple interfaces can be declared in a module, thus, different instances of the same module can be used in different situations. The interface is a subset of the module nodes, through which the communication with the environment is made. Module places can be annotated with a generic type, overridden with a concrete type at instance level, and constants declared in a module may have a new value in each instance.
Resumo:
Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes a new mean squared error based approach to determine the signal subspace in hyperspectral imagery. The method first estimates the signal and noise correlations matrices, then it selects the subset of eigenvalues that best represents the signal subspace in the least square sense. The effectiveness of the proposed method is illustrated using simulated and real hyperspectral images.
Resumo:
Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.