30 resultados para CRYSTAL SILICON CANTILEVERS
Resumo:
Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.
Resumo:
The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.
Resumo:
Philosophical Magazine Letters Volume 88, Issue 9-10, 2008 Special Issue: Solid and Liquid Foams. In commemoration of Manuel Amaral Fortes
Resumo:
Attending the British Liquid Crystal Society’s (BLCS) Annual Meeting was a formative experience in my days as a PhD student, starting way back in the 1990s. At that time, this involved travelling to (to me) exotic parts of the United Kingdom, such as Reading, Oxford or Manchester, away from Southampton where I was based. Some postdoctoral years in a different country followed, and three BLCS Meetings were missed, until in 1997 and 1998, I was able to attend again, in Southampton and Leeds, respectively. Not much had changed from my student days, the size and the format were still about the same, many of the leading characters were still around, and the closing talk would still be given by John Lydon. Well, at some point, I got myself a proper academic job on the Continent and stopped attending BLCS Annual Meetings altogether. The fond memories of my youth started to fade. Were the Meetings still on? It seemed so, as old friends and acquaintances would occasionally recount attending them, and even winning prizes at them. But, it all seemed rather remote now. Until, that is, it came to pass that the 27th BLCS Meeting would be held in Selwyn College, Cambridge, just down (or up, depending on how you look at it) the road from the Isaac Newton Institute, where I was spending part of my sabbatical leave. The opportunity to resume attendance could not be missed. A brief e-mail exchange with the organisers, and a cheque to cover the fee, duly secured this. And thus, it was with trepidation that I approached my first BLCS Annual Meeting in more than a decade.
Resumo:
Solar cells on lightweight and flexible substrates have advantages over glass-or wafer-based photovoltaic devices in both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules fabricated at maximum deposition temperature of 150 degrees C on 100 mu m thick polyethylene-naphtalate plastic films. Each module of 10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming eight rows with connection ports provided for external blocking diodes. The design optimization and device performance analysis are performed using a developed SPICE model.
Resumo:
We directly visualize the response of nematic liquid crystal drops of toroidal topology threaded in cellulosic fibers, suspended in air, to an AC electric field and at different temperatures over the N-I transition. This new liquid crystal system can exhibit non-trivial point defects, which can be energetically unstable against expanding into ring defects depending on the fiber constraining geometries. The director anchoring tangentially near the fiber surface and homeotropically at the air interface makes a hybrid shell distribution that in turn causes a ring disclination line around the main axis of the fiber at the center of the droplet. Upon application of an electric field, E, the disclination ring first expands and moves along the fiber main axis, followed by the appearance of a stable "spherical particle" object orbiting around the fiber at the center of the liquid crystal drop. The rotation speed of this particle was found to vary linearly with the applied voltage. This constrained liquid crystal geometry seems to meet the essential requirements in which soliton-like deformations can develop and exhibit stable orbiting in three dimensions upon application of an external electric field. On changing the temperature the system remains stable and allows the study of the defect evolution near the nematic-isotropic transition, showing qualitatively different behaviour on cooling and heating processes. The necklaces of such liquid crystal drops constitute excellent systems for the study of topological defects and their evolution and open new perspectives for application in microelectronics and photonics.
Resumo:
We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating.
Resumo:
This work reports a theoretical study aimed to identify the plasmonic resonance condition for a system formed by metallic nanoparticles embedded in an a-Si: H matrix. The study is based on a Tauc-Lorentz model for the electrical permittivity of a-Si: H and a Drude model for the metallic nanoparticles. It is calculated the The polarizability of an sphere and ellipsoidal shaped metal nanoparticles with radius of 20 nm. We also performed FDTD simulations of light propagation inside this structure reporting a comparison among the effects caused by a single nanoparticles of Aluminium, Silver and, as a comparison, an ideally perfectly conductor. The simulation results shows that is possible to obtain a plasmonic resonance in the red part of the spectrum (600-700 nm) when 20-30 nm radius Aluminium ellipsoids are embedded into a-Si: H.
Resumo:
Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Since long ago cellulosic lyotropic liquid crystals were thought as potential materials to produce fibers competitive with spidersilk or Kevlar, yet the processing of high modulus materials from cellulose-based precursors was hampered by their complex rheological behavior. In this work, by using the Rheo-NMR technique, which combines deuterium NMR with rheology, we investigate the high shear rate regimes that may be of interest to the industrial processing of these materials. Whereas the low shear rate regimes were already investigated by this technique in different works [1-4], the high shear rates range is still lacking a detailed study. This work focuses on the orientational order in the system both under shear and subsequent relaxation process arising after shear cessation through the analysis of deuterium spectra from the deuterated solvent water. At the analyzed shear rates the cholesteric order is suppressed and a flow-aligned nematic is observed which for the higher shear rates develops after certain time periodic perturbations that transiently annihilate the order in the system. During relaxation the flow aligned nematic starts losing order due to the onset of the cholesteric helices leading to a period of very low order where cholesteric helices with different orientations are forming from the aligned nematic, followed in the final stage by an increase in order at long relaxation times corresponding to the development of aligned cholesteric domains. This study sheds light on the complex rheological behavior of chiral nematic cellulose-based systems and opens ways to improve its processing. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The electrorheological (ER) effect is known as the change in the apparent viscosity upon the application of an external electric field perpendicular to the flow direction. In this work we present the electrorheological behaviour of suspensions in silicone oil of two different dispersed phases: foams of liquid crystal 4-n-penthyl-4'-cyanobiphenyl (5CB) encapsulated in polyvinyl alcohol (PVA) and nano/microspheres of 5CB encapsulated in silica. We will present the viscosity curves under the application of an electric field ranging between 0 and 3 kV mm(-1). The ER effect was observed for the suspensions of 5CB/PVA but not in the case of 5CB/silica. For the case of the suspensions of 5CB/PVA, the effect of the viscosity of the continuum phase and the concentration of the dispersed phase was analysed, showing that the enhancement of the viscosity of the suspension increases with the concentration, as expected, however the continuum phase viscosity has no significant effect, at least in the investigated viscosity range.
Resumo:
We present results, obtained by means of an analytic study and a numerical simulation, about the resonant condition necessary to produce a Localized Surface Plasmonic Resonance (LSPR) effect at the surface of metal nanospheres embedded in an amorphous silicon matrix. The study is based on a Lorentz dispersive model for a-Si:H permittivity and a Drude model for the metals. Considering the absorption spectra of a-Si:H, the best choice for the metal nanoparticles appears to be aluminium, indium or magnesium. No difference has been observed when considering a-SiC:H. Finite-difference time-domain (FDTD) simulation of an Al nanosphere embedded into an amorphous silicon matrix shows an increased scattering radius and the presence of LSPR induced by the metal/semiconductor interaction under green light (560 nm) illumination. Further results include the effect of the nanoparticles shape (nano-ellipsoids) in controlling the wavelength suitable to produce LSPR. It has been shown that is possible to produce LSPR in the red part of the visible spectrum (the most critical for a-Si:H solar cells applications in terms of light absorption enhancement) with aluminium nano-ellipsoids. As an additional results we may conclude that the double Lorentz-Lorenz model for the optical functions of a-Si:H is numerically stable in 3D simulations and can be used safely in the FDTD algorithm. A further simulation study is directed to determine an optimal spatial distribution of Al nanoparticles, with variable shapes, capable to enhance light absorption in the red part of the visible spectrum, exploiting light trapping and plasmonic effects. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.