24 resultados para COLD-AIR OUTBREAK
Resumo:
This study evaluates the dosimetric impact caused by an air cavity located at 2 mm depth from the top surface in a PMMA phantom irradiated by electron beams produced by a Siemens Primus linear accelerator. A systematic evaluation of the effect related to the cavity area and thickness as well as to the electron beam energy was performed by using Monte Carlo simulations (EGSnrc code), Pencil Beam algorithm and Gafchromic EBT2 films. A home-PMMA phantom with the same geometry as the simulated one was specifically constructed for the measurements. Our results indicate that the presence of the cavity causes an increase (up to 70%) of the dose maximum value as well as a shift forward of the position of the depthedose curve, compared to the homogeneous one. Pronounced dose discontinuities in the regions close to the lateral cavity edges are observed. The shape and magnitude of these discontinuities change with the dimension of the cavity. It is also found that the cavity effect is more pronounced (6%) for the 12 MeV electron beam and the presence of cavities with large thickness and small area introduces more significant variations (up to 70%) on the depthedose curves. Overall, the Gafchromic EBT2 film measurements were found in agreement within 3% with Monte Carlo calculations and predict well the fine details of the dosimetric change near the cavity interface. The Pencil Beam calculations underestimate the dose up to 40% compared to Monte Carlo simulations; in particular for the largest cavity thickness (2.8 cm).
Resumo:
Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM10 concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that lichens reacted physiologically in the polluted industrial area as evidenced by increased conductivity correlated to contamination level. The integration of temporal PM10 measurements and analysis of wind direction corroborated the importance of this industrialized region for air quality measurements and identified the relevance of traffic for the urban area.
Resumo:
Objective: A new protocol for fixation and slide preservation was evaluated in order to improve the quality of immunocytochemical reactions on cytology slides. Methods: The quality of immunoreactions was evaluated retrospectively on 186 cytology slides (130 direct smears, 56 cytospins) prepared from different cytology samples. Ninety-three of the slides were air dried, stored at -20 °C and fixed in acetone for 10 minutes (Protocol 1), whereas the other 93 were immediately fixed in methanol at -20 °C for at least 30 minutes, subsequently protected with polyethylene glycol (PEG) and stored at room temperature (Protocol 2). Immunocytochemical staining, with eight primary antibodies, was performed on a Ventana BenchMark Ultra instrument using an UltraView Universal DAB Detection Kit. The following parameters were evaluated for each immunoreaction: morphology preservation, intensity of specific staining, background and counterstain. The slides were blinded and independently scored by four observers with marks from 0 to 20. Results: The quality of immunoreactions was better on methanol-fixed slides protected with PEG than on air-dried slides stored in the freezer: X¯ = 14.44 ± 3.58 versus X¯ = 11.02 ± 3.86, respectively (P < 0.001). Conclusion: Immediate fixation of cytology slides in cold methanol with subsequent application of PEG is an easy and straightforward procedure that improves the quality of immunocytochemical reactions and allows the storage of the slides at room temperature.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.
Resumo:
The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.
Resumo:
Mainland Portugal, on the southwestern edge of the European continent, is located directly north of the boundary between the Eurasian and Nubian plates. It lies in a region of slow lithospheric deformation (< 5 mm yr(-1)), which has generated some of the largest earthquakes in Europe, both intraplate (mainland) and interplate (offshore). Some offshore earthquakes are nucleated on old and cold lithospheric mantle, at depths down to 60 km. The seismicity of mainland Portugal and its adjacent offshore has been repeatedly classified as diffuse. In this paper, we analyse the instrumental earthquake catalogue for western Iberia, which covers the period between 1961 and 2013. Between 2010 and 2012, the catalogue was enriched with data from dense broad-band deployments. We show that although the plate boundary south of Portugal is diffuse, in that deformation is accommodated along several distributed faults rather than along one long linear plate boundary, the seismicity itself is not diffuse. Rather, when located using high-quality data, earthquakes collapse into well-defined clusters and lineations. We identify and characterize the most outstanding clusters and lineations of epicentres and correlate them with geophysical and tectonic features (historical seismicity, topography, geologically mapped faults, Moho depth, free-air gravity, magnetic anomalies and geotectonic units). Both onshore and offshore, clusters and lineations of earthquakes are aligned preferentially NNE-SSW and WNW-ESE. Cumulative seismic moment and epicentre density decrease from south to north, with increasing distance from the plate boundary. Only few earthquake lineations coincide with geologically mapped faults. Clusters and lineations that do not match geologically mapped faults may correspond to previously unmapped faults (e.g. blind faults), rheological boundaries or distributed fracturing inside blocks that are more brittle and therefore break more easily than neighbour blocks. The seismicity map of western Iberia presented in this article opens important questions concerning the regional seismotectonics. This work shows that the study of low-magnitude earthquakes using dense seismic deployments is a powerful tool to study lithospheric deformation in slowly deforming regions, such as western Iberia, where high-magnitude earthquakes occur with long recurrence intervals.