19 resultados para Bit rate
Resumo:
The study of biosignals has had a transforming role in multiple aspects of our society, which go well beyond the health sciences domains to which they were traditionally associated with. While biomedical engineering is a classical discipline where the topic is amply covered, today biosignals are a matter of interest for students, researchers and hobbyists in areas including computer science, informatics, electrical engineering, among others. Regardless of the context, the use of biosignals in experimental activities and practical projects is heavily bounded by the cost, and limited access to adequate support materials. In this paper we present an accessible, albeit versatile toolkit, composed of low-cost hardware and software, which was created to reinforce the engagement of different people in the field of biosignals. The hardware consists of a modular wireless biosignal acquisition system that can be used to support classroom activities, interface with other devices, or perform rapid prototyping of end-user applications. The software comprehends a set of programming APIs, a biosignal processing toolbox, and a framework for real time data acquisition and postprocessing. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This paper describes the hardware implementation of a High-Rate MIMO Receiver in an FPGA for three modulations, namely BPSK, QPSK and 16-QAM based on the Alamouti scheme. The implementation with 16-QAM achieves more than 1.6 Gbps with 66% of the resources of a medium-sized Virtex-4 FPGA. This results indicate that the Alamouti scheme is a good design option for hardware implementation of a high-rate MIMO receiver. Also, using an FPGA, the modulation can be dynamically changed on demand.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
In this brief, a read-only-memoryless structure for binary-to-residue number system (RNS) conversion modulo {2(n) +/- k} is proposed. This structure is based only on adders and constant multipliers. This brief is motivated by the existing {2(n) +/- k} binary-to-RNS converters, which are particular inefficient for larger values of n. The experimental results obtained for 4n and 8n bits of dynamic range suggest that the proposed conversion structures are able to significantly improve the forward conversion efficiency, with an AT metric improvement above 100%, regarding the related state of the art. Delay improvements of 2.17 times with only 5% area increase can be achieved if a proper selection of the {2(n) +/- k} moduli is performed.