42 resultados para Backtesting, Risk exposure
Resumo:
Aflatoxin B1 (AFB1) has been recognized to produce cancer in human liver. In addition, epidemiological and laboratory studies demonstrated that the respiratory system was a target for AFB1. Exposure occurs predominantly through the food chain, but inhalation represents an additional route of exposure. The present study aimed to examine AFB1 exposure among poultry workers in Portugal. Blood samples were collected from a total of 31 poultry workers from six poultry farms. In addition, a control group (n = 30) was included comprised of workers who undertook administrative tasks. Measurement of AFB1 in serum was performed by enzyme-linked immunosorbent assay (ELISA). For examining fungi contamination, air samples were collected through an impaction method. Air sampling was obtained in pavilion interior and outside the premises, since this was the place regarded as the reference location. Using molecular methods, toxicogenic strains (aflatoxin-producing) were investigated within the group of species belonging to Aspergillus flavus complex. Eighteen poultry workers (59%) had detectable levels of AFB1 with values ranging from <1 ng/ml to4.23 ng/ml and with a mean value of 2 ± 0.98ng/ml. AFB1 was not detected in the serum sampled from any of the controls. Aspergillus flavus was the fungal species third most frequently found in the indoor air samples analyzed (7.2%) and was the most frequently isolated species in air samples containing only Aspergillus genus (74.5%). The presence of aflatoxigenic strains was only confirmed in outdoor air samples from one of the units, indicating the presence of a source inside the building in at least one case. Data indicate that AFB1 inhalation represents an additional risk in this occupational setting that needs to be recognized, assessed, and prevented.
Resumo:
Farmers are occupationally exposed to many respiratory hazards at work and display higher rates of asthma and respiratory symptoms than other workers. Dust is one of the components present in poultry production that increases risk of adverse respiratory disease occurrence. Dust originates from poultry residues, molds, and feathers and is biologically active as it contains microorganisms. Exposure to dust is known to produce a variety of clinical responses, including asthma, chronic bronchitis, chronic airways obstructive disease (COPD), allergic alveolitis, and organic dust toxic syndrome (ODTS). A study was developed to determine particle contamination in seven poultry farms and correlate this with prevalence rate of respiratory defects and record by means of a questionnaire the presence of clinical symptoms associated with asthma and other allergy diseases by European Community Respiratory Health Survey. Poultry farm dust contamination was found to contain higher concentrations of particulate matter (PM) PM5 and PM10. Prevalence rate of obstructive pulmonary disorders was higher in individuals with longer exposure regardless of smoking status. In addition, a high prevalence for asthmatic (42.5%) and nasal (51.1%) symptoms was noted in poultry workers. Data thus show that poultry farm workers are more prone to suffer from respiratory ailments and this may be attributed to higher concentrations of PM found in the dust. Intervention programs aimed at reducing exposure to dust will ameliorate occupational working conditions and enhance the health of workers.
Resumo:
Aspergillus is among a growing list of allergens that aggravate asthmatic responses. Significant pulmonary pathology is associated with Aspergillus-induced allergic and asthmatic lung disease. Environments with high levels of exposure to fungi are found in animal production facilities such as for swine and poultry, and farmers working with these are at increased risk for occupational respiratory diseases. Seven Portuguese poultry and seven swine farms were analyzed in order to estimate the prevalence, amount, and distribution of Aspergillus species, as well as to determine the presence of clinical symptoms associated with asthma and other allergy diseases in these highly contaminated settings. From the collected fungal isolates (699), an average incidence of 22% Aspergillus was detected in poultry farms, while the prevalence at swine farms was 14%. The most frequently isolated Aspergillus species were A. versicolor, A. flavus, and A. fumigatus. In poultry farms, A. flavus presented the highest level of airborne spores (>2000 CFU/m3), whereas in swine farms the highest was A. versicolor, with an incidence fourfold greater higher than the other mentioned species. Eighty workers in these settings were analyzed, ranging in age from 17 to 93 yr. The potentially hazardous exposure of poultry workers to mold allergens using sensitization markers was evaluated. Although no significant positive association was found between fungal contamination and sensitization to fungal antigens, a high incidence of respiratory symptoms in professionals without asthma was observed, namely, wheezing associated with dyspnea (23.8%) and dyspnea after strenuous activities (12.3%), suggesting underdiagnosed respiratory disturbances. Further, 32.5% of all exposed workers noted an improvement of respiratory ability during resting and holidays. From all the analyzed workers, seven were previously diagnosed with asthma and four reported the first attack after the age of 40 yr, which may be associated with their occupational exposure. Some of the fungi, namely, the Aspergillus species detected in this study, are known to induce hypersensitivity reactions in humans. This study confirmed the presence and distribution of Aspergillus in Portuguese poultry and swine farms, suggesting a possible occupational health problem and raising the need for preventive and protective measures to apply to avoid exposure in both occupational settings.
Resumo:
Several studies have shown that human exposures to airbome dust and microorganisms, such as bacteria and fungi, can cause respiratory diseases. Agricultural workers have been found to be at high risk of exposures to airborne particles. From a human health perspective dust exposure in pig farming is the most important risk because of the large number of workers needed in pig production and the increasing number of working hours inside enclosed buildings. In the pig buildings, particulate matters like dust play a role in not only deteriorating indoor air quality but also can cause an adverse health effect on workers. Generally, dust is recognized to adsorb and transport odorous compounds and biological agents. The aim of this study was to determine particles contamination in 7 swine farms located in Lisbon district, Portugal.
Resumo:
Agricultural workers especially poultry farmers, are at increased risk of occupational respiratory diseases. In poultry production besides fungi microbial volatile organic compounds (MVOCs) are also present due to compounds released during fungal metabolism. Dust is also one of the risk factors present in animal housing and is comprised by poultry residues, fungi and feathers. A study was developed aiming to assess occupational exposure to fungi, MVOCs and dust in seven poultry units located in Portugal.
Resumo:
Formaldehyde (FA) ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to FA occupationally. Recently, based on the correlation with nasopharyngeal cancer in humans, the International Agency for Research on Cancer (IARC) confirmed the classification of FA as a Group I substance. Considering the epidemiological evidence of a potential association with leukemia, the IARC has concluded that FA can cause this lymphoproliferative disorder. Our group has developed a method to assess the exposure and genotoxicity effects of FA in two different occupational settings, namely FAbased resins production and pathology and anatomy laboratories. For exposure assessment we applied simultaneously two different techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection Equipment with simultaneously video recording. Genotoxicity effects were measured by cytokinesis-blocked micronucleus assay in peripheral blood lymphocytes and by micronucleus test in exfoliated oral cavity epithelial cells, both considered target cells. The two exposure assessment techniques show that in the two occupational settings peak exposures are still occurring. There was a statistical significant increase in the micronucleus mean of epithelial cells and peripheral lymphocytes of exposed individuals compared with controls. In conclusion, the exposure and genotoxicity effects assessment methodologies developed by us allowed to determine that these two occupational settings promote exposure to high peak FA concentrations and an increase in the micronucleus mean of exposed workers. Moreover, the developed techniques showed promising results and could be used to confirm and extend the results obtained by the analytical techniques currently available.
Resumo:
Although there is an abundance of literature concerning the ingestion of food contaminated with aflatoxin B1 (AFB1), only a small number of studies explore mycotoxin exposure in occupational settings. Taking this into consideration, our study was developed with the intention of elucidating whether there is occupational exposure to AFB1 in Portuguese poultry and swine production facilities. A specific biomarker was used to assess exposure to AFB1. A total of 45 workers (34 from poultry farms; 11 from swine production facilities) participated in this study, providing blood samples. Additionally, a control group (n=30) composed of subjects without any type of contact with agricultural activity was considered. All participants signed a consent form and were provided with the study protocol. Eighteen poultry workers (58.6%) and six workers from the swine production facilities (54.5%) showed detectable levels of AFB1. In the control group, the AFB1 values were all below 1 ng/ml. No significant differences in AFB1 levels in serum between workers from poultry and swine farms were found. Poultry workers, however, showed the highest serum levels and a significant statistical difference between this group and the control group was found. Results suggest that exposure to AFB1 by inhalation occurs in both occupational settings representing an additional risk that needs to be recognised, assessed and prevented.
Resumo:
Versão preprint.
Resumo:
Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Because these compounds often have strong and/or unpleasant odors, they can be the source of odors associated with molds. MVOC's are products of the microorganisms primary and secondary metabolism and are composed of low molecular weight alcohols, aldehydes, amines, ketones, terpenes, aromatic and chlorinated hydrocarbons, and sulfur-based compounds, all of which are variations of carbon-based molecules.
Resumo:
Background - According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods - A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results - Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive correlation was found between duration of occupational exposure to formaldehyde (years of exposure) and micronucleus frequency in peripheral blood lymphocytes (r = 0.401; p < 0.001) and in epithelial cells (r = 0.209; p < 0.01). Conclusions - The population studied is exposed to high peak concentrations of formaldehyde with a long-term exposure. These two aspects, cumulatively, can be the cause of the observed genotoxic endpoint effects. The association of these cytogenetic effects with formaldehyde exposure gives important information to risk assessment process and may also be used to assess health risks for exposed workers.
Resumo:
Some previous studies have suggested that some of the volatile organic compounds (VOCs) found in composting plants may have a toxic effect that can influence, besides surroundings populations, workers from the composting plants. Impact of waste management to the environment and workers is already recognised as an environment and occupational health concerns. Several studies regarding the VOCs and bioaerosols emissions from composting have been conducted all over Europe and also in Asia. However, in Portugal the studies developed are scarce and normally VOCs are not studied and recognized as a risk factor present in this occupational setting. Consudering this, a study was developed in a Portuguese composting plant aiming to clarify if there was VOCs presence in the workplaces.
Resumo:
Several activities are ensured by dockers increase occupational exposure to several risk factors. being one of them the fungal burden from the load. In this study we aim at characterizing fungal contamination in one warehouse that storage sugar cane from a ship, and also in one crane cabinet that unload the same sugar cane from the ship. Air samples were collected from the warehouse and from inside the crane cabinet. An outdoor sample was also collected, from each sampling site, and regarding as reference. Sampling volume was selected depending in the contamination expected and the air samples were collect through an impaction method in a flow rate of 140 L/min onto malt extract agar (MEA) supplemented with chloramphenicol (0.05%), using the Millipore air Tester (Millipore). Surfaces samples from the warehouse were collected by swabbing the surfaces of the same indoor sites, using a 10 by 10cm square stencil according to the International Standard ISO 18593 (2004). The obtained swabs were then plated onto MEA. All the collected samples were incubated at 27ºC for 5 to 7 days. After laboratory processing and incubation of the collected samples, quantitative (colony-forming units - CFU/m3 and CFU/m2) and qualitative results were obtained with identification of the isolated fungal species. Aspergillus fumigatus present the highest fungal load and WHO guideline was overcome in both indoor sampling sites. The results obtained in this study highlight the need to know better the exposure burden from dockers, and specifically to fungi contamination.
Resumo:
In 1987, the International Agency for Research on Cancer concluded that there was sufficient evidence for carcinogenicity of naturally occurring aflatoxins in humans. Regarding occupational exposure to this chemical agent, farmers and other agricultural workers present a higher risk due to airborne aflatoxin via inhalation of dust. This study was carried out in 7 swine farms located at the district of Lisbon, Portugal. Blood samples were collected from a total of 11 workers. In addition, a control group (n = 25) was included that conducted administrative tasks in an educational institution without any type of agricultural activity. Results obtained suggest that occupational exposure to AFB1 by inhalation occurs and represents an additional risk in this occupational setting that need to be recognized, assessed and, most important, prevented.
Resumo:
Cork is a light, porous and impermeable material extracted from the bark of some trees. It is in manufacture of stoppers for wine bottles the main application of cork. It is estimated that the area occupied by cork oaks in the Iberian Peninsula is around 33% in Portugal and 23% in Spain. The world production of cork is focused in the south Europe, with Portugal being the most important producer followed by Spain. According to Companies Directory more than 100 manufactories from Portugal has their branch associated with the preparation and fabrication of cork. Cork workers are at risk for developing diseases of the respiratory tract such as occupational asthma and Suberosis, a form of pulmonary hypersensitivity due to repeated exposure to mouldy cork dust. In this review study papers from 2000 were analyzed to better understand which fungi species are associated with occupational disease in cork workers. The most prevalent fungi species in these workers that are associated with those occupational diseases are Penicilliumglabrum, Chrysoniliasitophila and Trichodermalongibrachiatum. Therefore, a specific knowledge about occupational exposure to fungi in the cork industry is the key to better understand the related diseases and to define preventive measures. Given the importance of this occupational setting in Portugal is essential to evaluate the combined exposure of fungi and particles and their metabolites. Further studies concerning exposure assessment to fungi and particles in the cork industry must be developed.
Resumo:
The use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Cytostatics drugs are a heterogeneous group of chemicals widely used in the treatment of cancer, nevertheless have been proved to be also mutagens, carcinogens and teratogens. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Alkaline comet assay is one of the most promising short-term genotoxicity assays for human risk assessment, being recommended to monitor populations chronically exposed to genotoxic agents. DNA glycosylase (OGG1) represents the main mechanism of protecting the integrity of the human DNA with respect to 8-OHdG, the most well studied biomarker of oxidative damage.