43 resultados para Array optimization
Resumo:
The foot and the ankle are small structures commonly affected by disorders, and their complex anatomy represent significant diagnostic challenges. SPECT/CT Image fusion can provide missing anatomical and bone structure information to functional imaging, which is particularly useful to increase diagnosis certainty of bone pathology. However, due to SPECT acquisition duration, patient’s involuntary movements may lead to misalignment between SPECT and CT images. Patient motion can be reduced using a dedicated patient support. We aimed at designing an ankle and foot immobilizing device and measuring its efficacy at improving image fusion. Methods: We enrolled 20 patients undergoing distal lower-limb SPECT/CT of the ankle and the foot with and without a foot holder. The misalignment between SPECT and CT images was computed by manually measuring 14 fiducial markers chosen among anatomical landmarks also visible on bone scintigraphy. Analysis of variance was performed for statistical analysis. Results: The obtained absolute average difference without and with support was 5.1±5.2 mm (mean±SD) and 3.1±2.7 mm, respectively, which is significant (p<0.001). Conclusion: The introduction of the foot holder significantly decreases misalignment between SPECT and CT images, which may have clinical influence in the precise localization of foot and ankle pathology.
Resumo:
With the increasing complexity of current networks, it became evident the need for Self-Organizing Networks (SON), which aims to automate most of the associated radio planning and optimization tasks. Within SON, this paper aims to optimize the Neighbour Cell List (NCL) for Long Term Evolution (LTE) evolved NodeBs (eNBs). An algorithm composed by three decisions were were developed: distance-based, Radio Frequency (RF) measurement-based and Handover (HO) stats-based. The distance-based decision, proposes a new NCL taking account the eNB location and interference tiers, based in the quadrants method. The last two algorithms consider signal strength measurements and HO statistics, respectively; they also define a ranking to each eNB and neighbour relation addition/removal based on user defined constraints. The algorithms were developed and implemented over an already existent radio network optimization professional tool. Several case studies were produced using real data from a Portuguese LTE mobile operator. © 2014 IEEE.
Resumo:
The urgent need to mitigate traffic problems such as accidents, road hazards, pollution and traffic jam have strongly driven the development of vehicular communications. DSRC (Dedicated Short Range Communications) is the technology of choice in vehicular communications, enabling real time information exchange among vehicles V2V (Vehicle-to-Vehicle) and between vehicles and infrastructure V2I (Vehicle-Infrastructure). This paper presents a receiving antenna for a single lane DSRC control unit. The antenna is a non-uniform array with five microstrip patches. The obtained beam width, bandwidth and circular polarization quality, among other characteristics, are compatible with the DSRC standards, making this antenna suitable for this application. © 2014 IEEE.
Resumo:
Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.
Resumo:
Electricity markets are systems for effecting the purchase and sale of electricity using supply and demand to set energy prices. Two major market models are often distinguished: pools and bilateral contracts. Pool prices tend to change quickly and variations are usually highly unpredictable. In this way, market participants often enter into bilateral contracts to hedge against pool price volatility. This article addresses the challenge of optimizing the portfolio of clients managed by trader agents. Typically, traders buy energy in day-ahead markets and sell it to a set of target clients, by negotiating bilateral contracts involving three-rate tariffs. Traders sell energy by considering the prices of a reference week and five different types of clients. They analyze several tariffs and determine the best share of customers, i.e., the share that maximizes profit. © 2014 IEEE.
Resumo:
This paper proposes a stochastic mixed-integer linear approach to deal with a short-term unit commitment problem with uncertainty on a deregulated electricity market that includes day-ahead bidding and bilateral contracts. The proposed approach considers the typically operation constraints on the thermal units and a spinning reserve. The uncertainty is due to the electricity prices, which are modeled by a scenario set, allowing an acceptable computation. Moreover, emission allowances are considered in a manner to allow for the consideration of environmental constraints. A case study to illustrate the usefulness of the proposed approach is presented and an assessment of the cost for the spinning reserve is obtained by a comparison between the situation with and without spinning reserve.
Resumo:
Functionally graded materials are a type of composite materials which are tailored to provide continuously varying properties, according to specific constituent's mixing distributions. These materials are known to provide superior thermal and mechanical performances when compared to the traditional laminated composites, because of this continuous properties variation characteristic, which enables among other advantages, smoother stresses distribution profiles. Therefore the growing trend on the use of these materials brings together the interest and the need for getting optimum configurations concerning to each specific application. In this work it is studied the use of particle swarm optimization technique for the maximization of a functionally graded sandwich beam bending stiffness. For this purpose, a set of case studies is analyzed, in order to enable to understand in a detailed way, how the different optimization parameters tuning can influence the whole process. It is also considered a re-initialization strategy, which is not a common approach in particle swarm optimization as far as it was possible to conclude from the published research works. As it will be shown, this strategy can provide good results and also present some advantages in some conditions. This work was developed and programmed on symbolic computation platform Maple 14. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Magneto-electro-elastic structures are built from materials that provide them the ability to convert in an interchangeable way, magnetic, electric and mechanical forms of energy. This characteristic can therefore provide an adaptive behaviour to a general configuration elastic structure, being commonly used in association with any type of composite material in an embedded or surface mounted mode, or by considering the usage of multiphase materials that enable achieving different magneto-electro-elastic properties. In a first stage of this work, a few cases studies will be considered to enable the validation of the model considered and the influence of the coupling characteristics of this type of adaptive structures. After that we consider the application of a recent computational intelligence technique, the differential evolution, in a deflection profile minimization problem. Studies on the influence of optimization parameters associated to the problem considered will be performed as well as the adoption of an adaptive scheme for the perturbation factor. Results are also compared with those obtained using an enhanced particle swarm optimization technique. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Radial basis functions are being used in different scientific areas in order to reproduce the geometrical modeling of an object/structure, as well as to predict its behavior. Due to its characteristics, these functions are well suited for meshfree modeling of physical quantities, which for instances can be associated to the data sets of 3D laser scanning point clouds. In the present work the geometry of a structure is modeled by using multiquadric radial basis functions, and its configuration is further optimized in order to obtain better performances concerning to its static and dynamic behavior. For this purpose the authors consider the particle swarm optimization technique. A set of case studies is presented to illustrate the adequacy of the meshfree model used, as well as its link to particle swarm optimization technique. © 2014 IEEE.
Resumo:
We present the modeling efforts on antenna design and frequency selection to monitor brain temperature during prolonged surgery using noninvasive microwave radiometry. A tapered log-spiral antenna design is chosen for its wideband characteristics that allow higher power collection from deep brain. Parametric analysis with the software HFSS is used to optimize antenna performance for deep brain temperature sensing. Radiometric antenna efficiency (eta) is evaluated in terms of the ratio of power collected from brain to total power received by the antenna. Anatomical information extracted from several adult computed tomography scans is used to establish design parameters for constructing an accurate layered 3-D tissue phantom. This head phantom includes separate brain and scalp regions, with tissue equivalent liquids circulating at independent temperatures on either side of an intact skull. The optimized frequency band is 1.1-1.6 GHz producing an average antenna efficiency of 50.3% from a two turn log-spiral antenna. The entire sensor package is contained in a lightweight and low-profile 2.8 cm diameter by 1.5 cm high assembly that can be held in place over the skin with an electromagnetic interference shielding adhesive patch. The calculated radiometric equivalent brain temperature tracks within 0.4 degrees C of the measured brain phantom temperature when the brain phantom is lowered 10. C and then returned to the original temperature (37 degrees C) over a 4.6-h experiment. The numerical and experimental results demonstrate that the optimized 2.5-cm log-spiral antenna is well suited for the noninvasive radiometric sensing of deep brain temperature.
Resumo:
In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS) method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests. © 2014, Gruppo Italiano Frattura. All rights reserved.
Resumo:
Meshless methods are used for their capability of producing excellent solutions without requiring a mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements. However, node placement is still an open question, specially in strong form collocation meshless methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-conditioned matrices. In order to optimize node position and number, a direct multisearch technique for multiobjective optimization is used to optimize node distribution in the global collocation method using radial basis functions. The optimization method is applied to the bending of isotropic simply supported plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a case study of heat exchanger network (HEN) retrofit with the objective to reduce the utilities consumption in a biodiesel production process. Pinch analysis studies allow determining the minimum duty utilities as well the maximum of heat recovery. The existence of heat exchangers for heat recovery already running in the process causes a serious restriction for the implementation of grassroot HEN design based on pinch studies. Maintaining the existing HEN, a set of alternatives with additional heat exchangers was created and analysed using some industrial advice and selection criteria. The final proposed solution allows to increase the actual 18 % of recovery heat of the all heating needs of the process to 23 %, with an estimated annual saving in hot utility of 35 k(sic)/y.
Resumo:
The increasing integration of wind energy in power systems can be responsible for the occurrence of over-generation, especially during the off-peak periods. This paper presents a dedicated methodology to identify and quantify the occurrence of this over-generation and to evaluate some of the solutions that can be adopted to mitigate this problem. The methodology is applied to the Portuguese power system, in which the wind energy is expected to represent more than 25% of the installed capacity in a near future. The results show that the pumped-hydro units will not provide enough energy storage capacity and, therefore, wind curtailments are expected to occur in the Portuguese system. Additional energy storage devices can be implemented to offset the wind energy curtailments. However, the investment analysis performed show that they are not economically viable, due to the present high capital costs involved.
Resumo:
As it is well known, competitive electricity markets require new computing tools for power companies that operate in retail markets in order to enhance the management of its energy resources. During the last years there has been an increase of the renewable penetration into the micro-generation which begins to co-exist with the other existing power generation, giving rise to a new type of consumers. This paper develops a methodology to be applied to the management of the all the aggregators. The aggregator establishes bilateral contracts with its clients where the energy purchased and selling conditions are negotiated not only in terms of prices but also for other conditions that allow more flexibility in the way generation and consumption is addressed. The aggregator agent needs a tool to support the decision making in order to compose and select its customers' portfolio in an optimal way, for a given level of profitability and risk.