31 resultados para Air Pollution, Indoor
Resumo:
According to numerous studies, airborne nanoparticles have a potential to produce serious adverse human health effects when deposited into the respiratory tract. The most important parts of the lung are the alveolar regions with their enormous surface areas and potential to transfer nanoparticles into the blood stream. These effects may be potentiated in case of the elderly, since this population is more susceptible to air pollutants in general and more to nanoparticles than larger particles. The main goal of this investigation was to determine the exposure of institutionalized elders to nanoparticles using Nanoparticle Surface Area Monitor (NSAM) equipment to calculate the deposited surface area (DSA) of nanoparticles into elderly lungs. In total, 193 institutionalized individuals over 65 yr of age were examined in four elderly care centers (ECC). The occupancy daily pattern was achieved by applying a questionnaire, and it was concluded that these subjects spent most of their time indoors, including the bedroom and living room, the indoor microenvironments with higher prevalence of elderly occupancy. The deposited surface area ranged from 10 to 46 mu m(2)/cm(3). The living rooms presented significantly higher levels compared with bedrooms. Comparing PM10 concentrations with nanoparticles deposited surface area in elderly lungs, it is conceivable that living rooms presented the highest concentration of PM10 and were similar to the highest average DSA. The temporal distribution of DSA was also assessed. While data showed a quantitative fluctuation in values in bedrooms, high peaks were detected in living rooms.
Resumo:
The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas [TIG], metal active gas [MAG] of carbon steel, and friction stir welding [FSW] of aluminum) in terms of deposited area in pulmonary alveolar tract using a nanoparticle surface area monitor (NSAM) analyzer. The obtained results showed the dependence of process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and MAG. However, all tested processes resulted in significant concentrations of ultrafine particles being deposited in humans lungs of exposed workers.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 mu m(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 mu m2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
Perchloroethylene (also known as tetrachloroethylene) is a solvent that has been a mainstay of the dry cleaning industry for decades. Since 1995 the International Agency for Research on Cancer considers that dry cleaning entails exposures that are possibly carcinogenic to humans (Group 2B). Meanwhile, the same institution classified perchloroethylene as probably carcinogenic to humans (Group 2A). Some industries have begun using alternative cleaning methods that do not require the use of perchloroethylene. However, in Portugal this solvent is still the most common dry-cleaning agent. An exploratory study was developed that aimed to find the occupational exposure to perchloroethylene in four Portuguese dry-cleaning stores. Activities involving higher exposure and variables that promote exposure were also investigated. Real-time measurements of volatile organic compounds concentrations were performed using portable equipment (MultiRAE, RAE Systems model – calibrated by isobutylene).
Resumo:
A descriptive study was developed to compare air and surfaces fungal contamination in ten hospitals’ food units and two food units from companies. Fifty air samples of 250 litres through impaction method were collected from hospitals’ food units and 41 swab samples from surfaces were also collected, using a 10 by 10 cm square stencil. Regarding the two companies, ten air samples and eight surface samples were collected. Air and surface samples were collected in food storage facilities, kitchen, food plating and canteen. Outdoor air was also collected since this is the place regarded as a reference. Simultaneously, temperature, relative humidity and meal numbers were registered. Concerning air from hospitals’ food units, 32 fungal species were identified, being the two most commonly isolated genera Penicillium sp.
Resumo:
A preocupação sobre a qualidade do ar nas zonas industriais confere aos estudos sobre a qualidade do ar uma importância acrescida. Este trabalho teve como objectivo saber qual a contribuição dos principais poluentes provenientes do tráfego automóvel para a qualidade do ar na zona do parque industrial da Sapec, da PenÃnsula da Mitrena, concelho de Setúbal, recorrendo ao modelo meteorológico e de qualidade do ar, TAPM (The Air Pollution Model). Neste trabalho analisaram-se dados da estação de monitorização da qualidade do ar, mais próxima da zona de estudo (Subestação) por forma a caracterizar-se a zona em causa, a nÃvel meteorológico e da qualidade do ar. Os dados metereológico desta estação também foram utilizados com o objectivo de se validar os resultados meteorológicos obtidos pelo modelo. Na avaliação da contribuição do tráfego para a qualidade do ar, recorreu-se a um estudo de tráfego realizado pela Estradas de Portugal (EP) em 2004. Este estudo realizou a contagem dos veÃculos que se dirigiram ao parque industrial nos dias 14 e 15 de Dezembro, num perÃodo de 24 horas. A partir dessa contagem e de factores de emissão foi possÃvel determinar a contribuição, de cada classe de veÃculo, para as concentrações atmosféricas de PM10 (resultantes de processos de combustão e ressuspensão), NOx, CO e HC. A comparação entre os dados meteorológicos simulados e medidos mostram que o modelo teve um bom comportamento, isto é, as discrepâncias entre os valores simulados e medidos foram mÃnimas. Relativamente à contribuição de cada categoria de veÃculos para a qualidade do ar, verificou-se que a classe de pesados de mercadorias foi aquela que mais contribui para as emissões de PM10, NOx e HC, enquanto que para as emissões de CO foram os veÃculos ligeiros de passageiros que tiveram uma maior contribuição. As classes dos motociclos e ciclomotores foram aquelas que tiveram uma menor contribuição para as concentrações atmosféricas de poluentes. Comparando as emissões de PM10 provenientes dos processos de combustão e de ressuspensão conclui-se que a maior percentagem provem da ressuspensão.
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 μm2/cm3 (increased to 72.9 μm2/cm3 due to gas burning) to a maximum of 890.3 μm2/cm3 measured during fish boiling in water, and a maximum of 4500 μm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.
Resumo:
Aflatoxin B1 (AFB1) has been recognized to produce cancer in human liver. In addition, epidemiological and laboratory studies demonstrated that the respiratory system was a target for AFB1. Exposure occurs predominantly through the food chain, but inhalation represents an additional route of exposure. The present study aimed to examine AFB1 exposure among poultry workers in Portugal. Blood samples were collected from a total of 31 poultry workers from six poultry farms. In addition, a control group (n = 30) was included comprised of workers who undertook administrative tasks. Measurement of AFB1 in serum was performed by enzyme-linked immunosorbent assay (ELISA). For examining fungi contamination, air samples were collected through an impaction method. Air sampling was obtained in pavilion interior and outside the premises, since this was the place regarded as the reference location. Using molecular methods, toxicogenic strains (aflatoxin-producing) were investigated within the group of species belonging to Aspergillus flavus complex. Eighteen poultry workers (59%) had detectable levels of AFB1 with values ranging from <1 ng/ml to4.23 ng/ml and with a mean value of 2 ± 0.98ng/ml. AFB1 was not detected in the serum sampled from any of the controls. Aspergillus flavus was the fungal species third most frequently found in the indoor air samples analyzed (7.2%) and was the most frequently isolated species in air samples containing only Aspergillus genus (74.5%). The presence of aflatoxigenic strains was only confirmed in outdoor air samples from one of the units, indicating the presence of a source inside the building in at least one case. Data indicate that AFB1 inhalation represents an additional risk in this occupational setting that needs to be recognized, assessed, and prevented.
Resumo:
Dust is a complex mixture of particles of organic and inorganic origin and different gases absorbed in aerosol droplets. In a poultry unit include dried faecal matter and urine, skin flakes, ammonia, carbon dioxide, pollens, feed and litter particles, feathers, grain mites, fungi spores, bacteria, viruses and their constituents. Dust particles vary in size and differentiation between particle size fractions is important in health studies in order to quantify penetration within the respiratory system. A descriptive study was developed in order to assess exposure to particles in a poultry unit during different operations, namely routine examination and floor turn over. Direct-reading equipment was used (Lighthouse, model 3016 IAQ). Particle measurement was performed in 5 different sizes (PM0.5; PM1.0; PM2.5; PM5.0; PM10). The chemical composition of poultry litter was also determined by neutron activation analysis. Normally, the litter of poultry pavilions is turned over weekly and it was during this operation that the higher exposure of particles was observed. In all the tasks considered PM5.0 and PM10.0 were the sizes with higher concentrations values. PM10 is what turns out to have higher values and PM0.5 the lowest values. The chemical element with the highest concentration was Mg (5.7E6 mg.kg-1), followed by K (1.5E4 mg.kg-1), Ca (4.8E3 mg.kg-1), Na (1.7E3 mg.kg-1), Fe (2.1E2 mg.kg-1) and Zn (4.2E1 mg.kg-1). This high presence of particles in the respirable range (<5–7μm) means that poultry dust particles can penetrate into the gas exchange region of the lung. Larger particles (PM10) present a range of concentrations from 5.3E5 and 3.0E6 mg/m3.
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 mu m(2)/cm(3) (increased to 72.9 mu m(2)/cm(3) due to gas burning) to a maximum of 890.3 mu m(2)/cm(3) measured during fish boiling in water, and a maximum of 4500 mu m(2)/cm(3) during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.
Resumo:
Fungal contamination of air in 10 gymnasiums with swimming pools was monitored. Fifty air samples of 200 L each were collected, using a Millipore air tester, from the area surrounding the pool, in training studios, in showers and changing rooms for both sexes, and also, outside premises, since these are the places regarded as reference. Simultaneously, environmental parameters – temperature and humidity – were also monitored. Some 25 different species of fungi were identified. The six most commonly isolated genera were the following: Cladosporium sp. (36.6%), Penicillium sp. (19.0%), Aspergillus sp. (10.2%), Mucor sp. (7%), Phoma sp. and Chrysonilia sp. (3.3%). For yeasts, three different genera were identified, namely, Rhodotorula sp. (70%), Trichosporon mucoides and Cryptococcus uniguttulattus (10%).
Resumo:
The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.
Resumo:
Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers, corroborating the increased exposure to risk factors, such as fungal load and their metabolites. This study aimed to determine the occupational exposure threat due to fungal contamination caused by the toxigenic isolates belonging to the complex of the species of Aspergillus flavus and also isolates fromAspergillus fumigatus species complex. The study was carried out in seven Portuguese poultries, using cultural and molecularmethodologies. For conventional/cultural methods, air, surfaces, and litter samples were collected by impaction method using the Millipore Air Sampler. For the molecular analysis, air samples were collected by impinger method using the Coriolis μ air sampler. After DNA extraction, samples were analyzed by real-time PCR using specific primers and probes for toxigenic strains of the Aspergillus flavus complex and for detection of isolates from Aspergillus fumigatus complex. Through conventional methods, and among the Aspergillus genus, different prevalences were detected regarding the presence of Aspergillus flavus and Aspergillus fumigatus species complexes, namely: 74.5 versus 1.0% in the air samples, 24.0 versus 16.0% in the surfaces, 0 versus 32.6% in new litter, and 9.9 versus 15.9%in used litter. Through molecular biology, we were able to detect the presence of aflatoxigenic strains in pavilions in which Aspergillus flavus did not grow in culture. Aspergillus fumigatus was only found in one indoor air sample by conventional methods. Using molecular methodologies, however, Aspergillus fumigatus complex was detected in seven indoor samples from three different poultry units. The characterization of fungal contamination caused by Aspergillus flavus and Aspergillus fumigatus raises the concern of occupational threat not only due to the detected fungal load but also because of the toxigenic potential of these species.
Resumo:
Social concerns for environmental impact on air, water and soil pollution have grown along with the accelerated growth of pig production. This study intends to characterize air contamination caused by fungi and particles in swine production, and, additionally, to conclude about their eventual environmental impact. Fiftysix air samples of 50 litters were collected through impaction method. Air sampling and particle matter concentration were performed in indoor and also outdoor premises. Simultaneously, temperature and relative humidity were monitored according to the International Standard ISO 7726 – 1998. Aspergillus versicolor presents the highest indoor spore counts (>2000 CFU/m3) and the highest overall prevalence (40.5%), followed by Scopulariopsis brevicaulis (17.0%) and Penicillium sp. (14.1%). All the swine farms showed indoor fungal species different from the ones identified outdoors and the most frequent genera were also different from the ones indoors. The distribution of particle size showed the same tendency in all swine farms (higher concentration values in PM5 and PM10 sizes). Through the ratio between the indoor and outdoor values, it was possible to conclude that CFU/m3 and particles presented an eventual impact in outdoor measurements.