28 resultados para Pre-exposure prophylaxis during breastfeeding
Resumo:
Interest rate risk is one of the major financial risks faced by banks due to the very nature of the banking business. The most common approach in the literature has been to estimate the impact of interest rate risk on banks using a simple linear regression model. However, the relationship between interest rate changes and bank stock returns does not need to be exclusively linear. This article provides a comprehensive analysis of the interest rate exposure of the Spanish banking industry employing both parametric and non parametric estimation methods. Its main contribution is to use, for the first time in the context of banks’ interest rate risk, a nonparametric regression technique that avoids the assumption of a specific functional form. One the one hand, it is found that the Spanish banking sector exhibits a remarkable degree of interest rate exposure, although the impact of interest rate changes on bank stock returns has significantly declined following the introduction of the euro. Further, a pattern of positive exposure emerges during the post-euro period. On the other hand, the results corresponding to the nonparametric model support the expansion of the conventional linear model in an attempt to gain a greater insight into the actual degree of exposure.
Resumo:
Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.
Resumo:
The aim of the present study was to develop novel Mycobacterium bovis bacille Calmette-Guérin (BCG)-loaded polymeric microparticles with optimized particle surface characteristics and biocompatibility, so that whole live attenuated bacteria could be further used for pre-exposure vaccination against Mycobacterium tuberculosis by the intranasal route. BCG was encapsulated in chitosan and alginate microparticles through three different polyionic complexation methods by high speed stirring. For comparison purposes, similar formulations were prepared with high shear homogenization and sonication. Additional optimization studies were conducted with polymers of different quality specifications in a wide range of pH values, and with three different cryoprotectors. Particle morphology, size distribution, encapsulation efficiency, surface charge, physicochemical properties and biocompatibility were assessed. Particles exhibited a micrometer size and a spherical morphology. Chitosan addition to BCG shifted the bacilli surface charge from negative zeta potential values to strongly positive ones. Chitosan of low molecular weight produced particle suspensions of lower size distribution and higher stability, allowing efficient BCG encapsulation and biocompatibility. Particle formulation consistency was improved when the availability of functional groups from alginate and chitosan was close to stoichiometric proportion. Thus, the herein described microparticulate system constitutes a promising strategy to deliver BCG vaccine by the intranasal route.
Resumo:
Results of research work developed in anatomy and pathology laboratories have indicated that “macroscopic examination” is the task involving the highest exposure to formaldehyde. This is probably because precision and very good visibility are needed and, therefore, pathologists must lean over the specimen with consequent increase of proximity. With this research we aimed to know formaldehyde exposure in case of animal’s macroscopic examination. Three macroscopic examinations were considered and exposure assessment performed with photo ionization detection (PID) direct-reading equipment (with an 11.7 eV lamp) designated by First-Check, from Ion Science. Higher values of formaldehyde concentration (ceiling values) were register in each exam.
Resumo:
Background: The majority of studies investigated ambient particles, although in most industrialized countries people spend most of their time indoors and significant emissions of fine and ultrafine particles leading to human exposure are caused by various indoor tasks, including cleaning tasks. Objective: To characterize the occupational exposure to particles during cleaning of hotel's rooms. Methodology: Measurements of mass concentration and particle number concentration were performed before and during cleaning tasks in two rooms with different floor types (wood and carpet) with the equipment Lighthouse, model 3016 IAQ. Results: Considering mass concentration, particles with higher were responsable for higher leves of contamination, particularly PM5.0 and PM10.0. However, considering the particle number concentration, the smaller particle size obtained the higher values. Conclusion: It was observed higher number of particles of the smaller size in all tasks, which is associated with worse health effects. It was observed that the room with wood in the floor has lower values when compared to the room with carpet. The tasks with greater exposure were the 'vacuuming' and 'clean up powder'.
Resumo:
In the printing industry, volatile organic compounds main sources are the uses of organic solvents, fountain solutions and cleaning agents. Nowadays, one circumstance which might confuse the exposure reality is that the majority of solvents which are often used have a faint odour. Therefore, the conditions at offset printing in regard to solvent exposure may seem acceptable to workers. Fortunately, general ventilation and local exhaust systems have also become more common, and new printing machines, often with automatic cleaning, have entered the market. The health effects of volatile organic solvents are dependent on the chemicals involved but, normally, are associated with affecting the nervous system, the liver and also the kidneys. The purpose of this study was to document the conditions regarding exposure to volatile organic compounds in an offset printing unit and to permit identify task with higher exposure and with priority for preventive measures application. Exposure assessment was done before and after installation of general ventilation and local exhaust equipments and during printing and cleaning procedure.
Resumo:
The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 μm2/cm3, which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented by measuring the electrical mobility diameter (varying from 18.3 to 128.3 nm) and number of particles that showed higher values than those previously reported for Madrid and Brisbane. Also, electron microscopy showed that the collected particles were composed of carbonaceous agglomerates, typical of particles emitted by the exhaustion of diesel vehicles. Implications: The approach of this study considers the measurement of surface deposited alveolar area of particles in the outdoor urban environment of Lisbon, Portugal. This type of measurements has not been done so far. Only particulate matter with aerodynamic diameters <2.5 (PM2.5) and >10 (PM10) μm have been measured in outdoor environments and the levels found cannot be found responsible for all the observed health effects. Therefore, the exposure to nano- and ultrafine particles has not been assessed systematically, and several authors consider this as a real knowledge gap and claim for data such as these that will allow for deriving better and more comprehensive epidemiologic studies. Nanoparticle surface area monitor (NSAM) equipments are recent ones and their use has been limited to indoor atmospheres. However, as this study shows, NSAM is a very powerful tool for outdoor environments also. As most lung diseases are, in fact, related to deposition of the alveolar region of the lung, the metric used in this study is the ideal one.
Resumo:
The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM2.5 and PM10 patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 μm2/cm3, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario.
Resumo:
Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 μm2/cm3 (increased to 72.9 μm2/cm3 due to gas burning) to a maximum of 890.3 μm2/cm3 measured during fish boiling in water, and a maximum of 4500 μm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities.
Resumo:
The production of MVOC by fungi has been taken into account especially from the viewpoint of indoor pollution with microorganisms but the relevance of fungal metabolites in working environments has not been sufficiently studied. The purpose of this study was to assess exposure to MVOCs in a waste-handling unit. It was used Multirae equipment (RAE Systems) to measured MVOCs concentration with a 10.6 eV lamps. The measurements were done near workers nose and during the normal activities. All measurements were done continuously and had the duration of 5 minutes at least. It was consider the higher value obtained in each measurement. In addition, for knowing fungi contamination, five air samples of 50 litres were collected through impaction method at 140 L/minute, at one meter tall, on to malt extract agar with the antibiotic chloramphenicol (MEA). MVOCs results range between 4.7 ppm and 8.9 ppm in the 6 locations consider. These results are eight times higher than normally obtained in indoor settings. Considering fungi results, two species were identified in air, being the genera Penicillium found in all the samples in uncountable colonies and Rhizopus only in one sample (40 UFC/m3). These fungi are known as MVOCs producers, namely terpenoids, ketones, alcohols and others. Until now, there has been no evidence that MVOCs are toxicologically relevant, but further epidemiological research is necessary to elucidate their role on human’s health, particularly in occupational settings where microbiological contamination is common. Additionally, further research should concentrate on quantitative analyses of specific MVOCs.
Resumo:
Dust is a complex mixture of particles of organic and inorganic origin and different gases absorbed in aerosol droplets. In a poultry unit include dried faecal matter and urine, skin flakes, ammonia, carbon dioxide, pollens, feed and litter particles, feathers, grain mites, fungi spores, bacteria, viruses and their constituents. Dust particles vary in size and differentiation between particle size fractions is important in health studies in order to quantify penetration within the respiratory system. A descriptive study was developed in order to assess exposure to particles in a poultry unit during different operations, namely routine examination and floor turn over. Direct-reading equipment was used (Lighthouse, model 3016 IAQ). Particle measurement was performed in 5 different sizes (PM0.5; PM1.0; PM2.5; PM5.0; PM10). The chemical composition of poultry litter was also determined by neutron activation analysis. Normally, the litter of poultry pavilions is turned over weekly and it was during this operation that the higher exposure of particles was observed. In all the tasks considered PM5.0 and PM10.0 were the sizes with higher concentrations values. PM10 is what turns out to have higher values and PM0.5 the lowest values. The chemical element with the highest concentration was Mg (5.7E6 mg.kg-1), followed by K (1.5E4 mg.kg-1), Ca (4.8E3 mg.kg-1), Na (1.7E3 mg.kg-1), Fe (2.1E2 mg.kg-1) and Zn (4.2E1 mg.kg-1). This high presence of particles in the respirable range (<5–7μm) means that poultry dust particles can penetrate into the gas exchange region of the lung. Larger particles (PM10) present a range of concentrations from 5.3E5 and 3.0E6 mg/m3.
Resumo:
Aspergillus is among a growing list of allergens that aggravate asthmatic responses. Significant pulmonary pathology is associated with Aspergillus-induced allergic and asthmatic lung disease. Environments with high levels of exposure to fungi are found in animal production facilities such as for swine and poultry, and farmers working with these are at increased risk for occupational respiratory diseases. Seven Portuguese poultry and seven swine farms were analyzed in order to estimate the prevalence, amount, and distribution of Aspergillus species, as well as to determine the presence of clinical symptoms associated with asthma and other allergy diseases in these highly contaminated settings. From the collected fungal isolates (699), an average incidence of 22% Aspergillus was detected in poultry farms, while the prevalence at swine farms was 14%. The most frequently isolated Aspergillus species were A. versicolor, A. flavus, and A. fumigatus. In poultry farms, A. flavus presented the highest level of airborne spores (>2000 CFU/m3), whereas in swine farms the highest was A. versicolor, with an incidence fourfold greater higher than the other mentioned species. Eighty workers in these settings were analyzed, ranging in age from 17 to 93 yr. The potentially hazardous exposure of poultry workers to mold allergens using sensitization markers was evaluated. Although no significant positive association was found between fungal contamination and sensitization to fungal antigens, a high incidence of respiratory symptoms in professionals without asthma was observed, namely, wheezing associated with dyspnea (23.8%) and dyspnea after strenuous activities (12.3%), suggesting underdiagnosed respiratory disturbances. Further, 32.5% of all exposed workers noted an improvement of respiratory ability during resting and holidays. From all the analyzed workers, seven were previously diagnosed with asthma and four reported the first attack after the age of 40 yr, which may be associated with their occupational exposure. Some of the fungi, namely, the Aspergillus species detected in this study, are known to induce hypersensitivity reactions in humans. This study confirmed the presence and distribution of Aspergillus in Portuguese poultry and swine farms, suggesting a possible occupational health problem and raising the need for preventive and protective measures to apply to avoid exposure in both occupational settings.
Resumo:
Agricultural workers especially poultry farmers, are at increased risk of occupational respiratory diseases. In poultry production besides fungi microbial volatile organic compounds (MVOCs) are also present due to compounds released during fungal metabolism. Dust is also one of the risk factors present in animal housing and is comprised by poultry residues, fungi and feathers. A study was developed aiming to assess occupational exposure to fungi, MVOCs and dust in seven poultry units located in Portugal.
Resumo:
Purpose/Introduction: To determine the clinical utility of pre-operative diffusion tensor (DT) tractography of the facial nerve in the vicinity of cerebellopontine angle (CPA) tumours. The location of the facial nerve was established pre-operatively by tractography and compared with in-vivo electrode stimulation during microsurgery of vestibular schwannomas and rare CPA masses (meningiomas and arachnoid cysts).