20 resultados para Ionizing radiation
Resumo:
Present study develops and implements a specific methodology for the assessment of health risks derived from occupational exposure of workers to ionizing radiation in the fertilizer manufacturing industry. Negative effects on the health of exposed workers are identified, according to the types and levels of exposure to which they are subject, namely an increase of the risk of cancer even with long term exposure to low level radiation. Ionizing radiation types, methods and measuring equipment are characterized. The methodology developed in a case study of a phosphate fertilizer industry is applied, assessing occupational exposure to ionizing radiation caused by external radiation and the inhalation of radioactive gases and dust.
Resumo:
The increasing use of ionizing radiation for medical purposes emphasizes the concern about safety and justification of using ionizing radiation. This is linked with the use of new and high-dose X-ray technology (particularly CT). According to the UNSCEAR 2010 Report the total number of diagnostic medical examinations (both medical and dental) is estimated to have risen from 2.4 billion (period 1991–1996) to 3.6 billion (period 1997– 2008) - a marked increase in collective doses. An appropriate use of technology aiming diagnostic or therapy and respecting the ALARA principle is a mandatory requisite to safely perform any radiological procedure. Radiation protection is thus, a concern of all specialists in the radiology field ( radiologists, radiographers, medical physicists, among other professional groups). The importance of education and training of these professionals in reducing patients’ doses while maintaining the desired level of quality in medical exposures, as well as precise therapeutic treatments is well recognized. Education, training and continuing professional development (CPD) constitute a triad pointing towards the radiographers’ development of competences in the radiation protection field. This presentation excludes the radiographer role and competences in the fields of ultrasonography and MRI.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Protecção Contra Radiações
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Protecção contra Radiações
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde. Área de especialização: Imagem Digital.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Proteção Contra Radiações
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Proteção Contra as Radiações.
Resumo:
Introdução – As funções a desempenhar pelos técnicos de radiologia (TR) envolvem exposição ocupacional às radiações ionizantes, podendo acarretar potenciais efeitos biológicos. Metodologia – De modo a avaliar a dose efetiva recebida pelo TR nos diferentes métodos de estudo radiológico em que este trabalha, procedeu-se à realização de um estudo exploratório-descritivo. Efetuaram-se medições com dosímetros termoluminescentes em cinco valências radiológicas e foram aplicados questionários aos TR para determinar o tempo total de trabalho, bem como as medidas gerais de proteção radiológica utilizadas durante o período de medições. Resultados – Verificou-se que as doses efetivas, calculadas por hora, foram mais elevadas na valência de radiologia de intervenção, com os dados obtidos sobre a proteção plumbínea, sendo que a valência com menor dose efetiva calculada por hora foi a de mamografia, que apresentou um valor de medição igual a zero. Conclusões – Com o presente estudo conclui-se que existem diferenças de dose efetiva recebida de acordo com a função desempenhada pelo TR. Pela extrapolação dos valores calculados para doses efetivas anuais, verificou-se que os valores correspondentes a cada valência se encontram muito abaixo do limite anual legal de 20mSv.
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde - Área de especialização: Terapia com Radiações
Resumo:
Mestrado em Radiações Aplicadas às Tecnologias da Saúde
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained.
Resumo:
The big proliferation of mobile communication systems has caused an increased concern about the interaction between the human body and the antennas of mobile handsets. In order to study the problem, a multiband antenna was designed, fabricated and measured to operate over two frequency sub bands 900 and 1800 MHz. After that, we simulated the same antenna, but now, in the presence of a human head model to analyze the head's influence. First, the influence of the human head on the radiation efficiency of the antenna has been investigated as a function of the distance between the head and the antenna and with the inclination of the antenna. Furthermore, the relative amount of the electromagnetic power absorbed in the head has been obtained. In this study the electromagnetic analysis has been performed via FDTD (Finite Difference Time Domain).
Resumo:
Purpose/Objective: The purpose of this work was to determine biologically equivalent alternative regimens for the treatment of prostate cancer using External Beam Radiotherapy (EBRT) and Low Dose-Rate Brachytherapy (LDRBT) with 125I implants and to evaluate the sensitivity of these regimens to different sets of radiobiological parameters of the Linear-Quadratic (LQ) model.
Resumo:
In this paper, we present the results of mammography quality control tests related to the work with Portuguese mammography equipment, either in conventional or in digital mammography computed radiography, showing the main differences in the tested equipments. Quality control in mammography is a very special area of quality control in radiology, which demands relatively high knowledge on physics. Digital imaging is changing the standards of the radiographic imaging. Regarding mammography, this is yet a controversial issue owing to some limitations of the digital detectors, like the resolution for instance. A complete set of results regarding radiation protection of the patients submitted to mammography diagnosis is presented. A discussion of the quality image parameters and its interpretation in conventional and digital mammography is presented. In conclusion, we present a sample of results that can be considered as characteristics of mammography equipment in Portugal.
Resumo:
This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques – forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT – and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques – f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART – were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose–volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.