19 resultados para 100501 Antennas and Propagation
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
The concept of explaining the use of an old tool like the Smith chart, using modern tools like MATLAB [1] scripts in combination with e-learning facilities, is exemplified by two MATLAB scripts. These display, step by step, the graphical procedure that must be used to solve the double-stub impedance-matching problem. These two scripts correspond to two different possible ways to analyze this matching problem, and they are important for students to learn by themselves.
Resumo:
This paper describes the design of a textile microstrip antenna for 2.4 GHz. Two different fabrics are used: one for the dielectric part and another one for the conductor part. The dielectric constant of the dielectric fabric is determined experimentally. The input matching is studied by electromagnetic simulation and experimentally. Since the antenna is meant to be incorporated in the user's clothe, the effect that the antenna bending has on the matching level is also investigated both theoretically and experimentally.
Resumo:
This paper presents the characterization of an indoor Wimax radio channel using the Finite-Difference Time-Domain (FDTD) [1] method complemented with the Convolutional Perfect Matched Layer (CPML) technique [2]. An indoor 2D scenario is simulated in the 3.5GHz band (IEEE 802.16d-2004 and IEEE 802.16e-2005 [3]). In this study, we used two complementary techniques in both analysis, technique A and B for fading based on delay spread and technique C and D for fading based on Doppler spread. Both techniques converge to the same result. Simulated results define the channel as flat, slow and without inter-symbolic interference (ISI), making the application of the spatial diversity the most appropriate scheme.
Resumo:
In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.
Resumo:
This paper presents the design methodology for the creation of corrugated horn antennas for the CosmoGal satellite. The mission will collect the radiation of the cosmic microwave background, by a radiometer in three different radio astronomy frequency bands (10.6-10.7GHz; 15.35-15.4GHz; 23.6-24GHz). It is discussed the design of several types of horns, simulated with the CST software. The best result points to a choked Gaussian corrugated horn antenna, with directivity of 23 dBi, side lobes 35 dB below and cross polarization better than -45 dB. Plus, with the advantage of having a small dimension, with a total length of only 7.43λ © 2014 IEEE.
Resumo:
The urgent need to mitigate traffic problems such as accidents, road hazards, pollution and traffic jam have strongly driven the development of vehicular communications. DSRC (Dedicated Short Range Communications) is the technology of choice in vehicular communications, enabling real time information exchange among vehicles V2V (Vehicle-to-Vehicle) and between vehicles and infrastructure V2I (Vehicle-Infrastructure). This paper presents a receiving antenna for a single lane DSRC control unit. The antenna is a non-uniform array with five microstrip patches. The obtained beam width, bandwidth and circular polarization quality, among other characteristics, are compatible with the DSRC standards, making this antenna suitable for this application. © 2014 IEEE.
Resumo:
In this paper we propose a possible design for a RFID tag antenna embedded into cork. The antenna is small and conformal and intended to be used into bottle stoppers for tracking and logging purposes of wine or other beverages. The proposed design is based on an inductive ring and an added resistance in order to modify the current distributions of the antenna. The resulting antenna has a relatively directive radiation pattern and despite the small efficiency it is able to operate with a commercial RFID reader at a reasonable distance. © 2014 IEEE.
Resumo:
Wireless communications are widely used for various applications, requiring antennas with different features. Often, to achieve the desired radiation pattern, is necessary to employ antenna arrays, using non-uniform excitation on its elements. Power dividers can be used and the best known are the T-junction and the Wilkinson power divider, whose main advantage is the isolation between output ports. In this paper the impact of this isolation on the overall performance of a circularly polarized planar antenna array using non-uniform excitation is investigated. Results show a huge decrease of the array bandwidths either in terms of return loss or in polarization, without resistors. © 2014 IEEE.
Resumo:
In this paper we present a possible design for a passive RFID tag antenna on paper substrate to be integrated into bottle labels. Considering the application scenario, we verified and determined the permittivity and dissipation factor of the materials in order to simulate all the possible sources that would influence the antenna performance. The measured results reported a maximum reading range of 1.45 m even though the efficiency obtained with the antenna integrated into the bottle was only of 3%. © 2014 IEEE.
Resumo:
This paper describes the hardware implementation of a High-Rate MIMO Receiver in an FPGA for three modulations, namely BPSK, QPSK and 16-QAM based on the Alamouti scheme. The implementation with 16-QAM achieves more than 1.6 Gbps with 66% of the resources of a medium-sized Virtex-4 FPGA. This results indicate that the Alamouti scheme is a good design option for hardware implementation of a high-rate MIMO receiver. Also, using an FPGA, the modulation can be dynamically changed on demand.
Resumo:
This paper provides a review of antennas applied for indoor positioning or localization systems. The desired requirements of those antennas when integrated in anchor nodes (reference nodes) are discussed, according to different localization techniques and their performance. The described antennas will be subdivided into the following sections according to the nature of measurements: received signal strength (RSS), time of flight (ToF), and direction of arrival (DoA). This paper intends to provide a useful guide for antenna designers who are interested in developing suitable antennas for indoor localization systems.
Resumo:
This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.
Resumo:
A pentagonal patch-excited sectorized antenna (SA) suitable for 2.4-2.5 GHz localization systems was studied and developed. The integration of six patch-excited structures converges into a sectorized antenna called Hive5 that provides gain improvement compared to a patch antenna, maximum variation of 3 dB beam width over the radiation pattern and circular polarization (CP). This antenna is presented and analyzed taking into account the tap length and the flare angle. The proposed antenna in combination with a RF-Switch provides a cost effective solution for localization based on Wireless Sensor Networks (WSN) and will be used for implementing angle of arrival (AoA) techniques combined with RF fingerprinting techniques.
Resumo:
In this paper we show the design of passive UHF RFID tag antenna on cork substrate. Due to the cork sensitivity to humidity changes, we can use the developed sensor to sense changes in the relative humidity of the environment, without the need for batteries. The antenna is built using inkjet printing technology, which allows a good accuracy of the design manufacturing. The sensor proved usable for humidity changes detection with a variation of threshold power from 11 to 15 dB between 60 and near 100% humidity levels. Presenting, therefore, reading ranges between 3 to 5 meters. © 2015 EurAAP.