1 resultado para 3D display systems
em ReCiL - Reposit
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archive of European Integration (1)
- Aston University Research Archive (9)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (235)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (25)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (28)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (56)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (6)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (35)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (3)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (16)
- Universidad de Alicante (11)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (40)
- Universidade de Madeira (2)
- Universidade do Minho (7)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (38)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (17)
- Université de Montréal, Canada (7)
- Université Laval Mémoires et thèses électroniques (2)
- University of Michigan (39)
- University of Queensland eSpace - Australia (236)
- University of Washington (1)
Resumo:
The ability to foresee how behaviour of a system arises from the interaction of its components over time - i.e. its dynamic complexity – is seen an important ability to take effective decisions in our turbulent world. Dynamic complexity emerges frequently from interrelated simple structures, such as stocks and flows, feedbacks and delays (Forrester, 1961). Common sense assumes an intuitive understanding of their dynamic behaviour. However, recent researches have pointed to a persistent and systematic error in people understanding of those building blocks of complex systems. This paper describes an empirical study concerning the native ability to understand systems thinking concepts. Two different groups - one, academic, the other, professional – submitted to four tasks, proposed by Sweeney and Sterman (2000) and Sterman (2002). The results confirm a poor intuitive understanding of the basic systems concepts, even when subjects have background in mathematics and sciences.