8 resultados para unknown input functional observers

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radial undistortion model proposed by Fitzgibbon and the radial fundamental matrix were early steps to extend classical epipolar geometry to distorted cameras. Later minimal solvers have been proposed to find relative pose and radial distortion, given point correspondences between images. However, a big drawback of all these approaches is that they require the distortion center to be exactly known. In this paper we show how the distortion center can be absorbed into a new radial fundamental matrix. This new formulation is much more practical in reality as it allows also digital zoom, cropped images and camera-lens systems where the distortion center does not exactly coincide with the image center. In particular we start from the setting where only one of the two images contains radial distortion, analyze the structure of the particular radial fundamental matrix and show that the technique also generalizes to other linear multi-view relationships like trifocal tensor and homography. For the new radial fundamental matrix we propose different estimation algorithms from 9,10 and 11 points. We show how to extract the epipoles and prove the practical applicability on several epipolar geometry image pairs with strong distortion that - to the best of our knowledge - no other existing algorithm can handle properly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI’s code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineer an abstract model of a user interface directly from the GUI’s legacy code. We also present results from a case study. These results are encouraging and give evidence that the goal of reverse engineering user interfaces can be met with more work on this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clone detection is well established for imperative programs. It works mostly on the statement level and therefore is ill-suited for func- tional programs, whose main constituents are expressions and types. In this paper we introduce clone detection for functional programs using a new intermediate program representation, dubbed Functional Control Tree. We extend clone detection to the identi cation of non-trivial func- tional program clones based on the recursion patterns from the so-called Bird-Meertens formalism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last decade component-based software development arose as a promising paradigm to deal with the ever increasing complexity in software design, evolution and reuse. SHACC is a prototyping tool for component-based systems in which components are modelled coinductively as generalized Mealy machines. The prototype is built as a HASKELL library endowed with a graphical user interface developed in Swing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually targeting either the imperative or the object oriented paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird- Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general alternative to slicing functional programs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common problem among information systems is the storage and maintenance of permanent information identified by a key. Such systems are typically known as data base engines or simply as data bases. Today the systems information market is full of solutions that provide mass storage capacities implemented in different operating system and with great amounts of extra functionalities. In this paper we will focus on the formal high level specification of data base systems in the Haskell language. We begin by introducing a high level view of a data base system with a specification of the most common operations in a functional point of view. We then augment this specification by lifting to the state monad which is then modified once again to permit input/output operations between the computations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.