1 resultado para stock order flow model
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (8)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Aston University Research Archive (28)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (141)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (65)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (12)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (6)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (46)
- DRUM (Digital Repository at the University of Maryland) (1)
- Earth Simulator Research Results Repository (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (7)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (2)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (4)
- Publishing Network for Geoscientific & Environmental Data (82)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (11)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (78)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (27)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (30)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (23)
- Université de Montréal (1)
- Université de Montréal, Canada (8)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (23)
- University of Queensland eSpace - Australia (89)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
In daily cardiology practice, assessment of left ventricular (LV) global function using non-invasive imaging remains central for the diagnosis and follow-up of patients with cardiovascular diseases. Despite the different methodologies currently accessible for LV segmentation in cardiac magnetic resonance (CMR) images, a fast and complete LV delineation is still limitedly available for routine use. In this study, a localized anatomically constrained affine optical flow method is proposed for fast and automatic LV tracking throughout the full cardiac cycle in short-axis CMR images. Starting from an automatically delineated LV in the end-diastolic frame, the endocardial and epicardial boundaries are propagated by estimating the motion between adjacent cardiac phases using optical flow. In order to reduce the computational burden, the motion is only estimated in an anatomical region of interest around the tracked boundaries and subsequently integrated into a local affine motion model. Such localized estimation enables to capture complex motion patterns, while still being spatially consistent. The method was validated on 45 CMR datasets taken from the 2009 MICCAI LV segmentation challenge. The proposed approach proved to be robust and efficient, with an average distance error of 2.1 mm and a correlation with reference ejection fraction of 0.98 (1.9 ± 4.5%). Moreover, it showed to be fast, taking 5 seconds for the tracking of a full 4D dataset (30 ms per image). Overall, a novel fast, robust and accurate LV tracking methodology was proposed, enabling accurate assessment of relevant global function cardiac indices, such as volumes and ejection fraction.