4 resultados para skin self examination
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Digital thermal imaging has been employed in medicine for over 50 years. However, its use has been focused on vascular, musculoskeletal and neurological conditions, while other potential applications,such as obstetrics, have been much less explored. This paper presents a study conducted during 2011 at the Hospital of Braga on a group of healthy pregnant women in the last third of gestation. The analysis focused on characterizing typical pregnant women steady temperature profiles in specific defined regions of interest (ROI), and determining if the thermal symmetry values for late pregnant healthy women are in line with the values for non-pregnant healthy women. A temperature distribution pattern was found in the defined ROI. The obtained thermal symmetry value had a maximum of 0.370.2 1C, and there was no evidence for the influence of age (p40.05) in the observed group. The influence of the BMI requires further investigation since one ROI (P2 right) presented a p¼0.059, close to the threshold of statistical evidence in the influence of BMI. The study group presented symmetry values in line with non-pregnant reference values, but the profiles in temperature distribution are different. Assumptions can therefore now be used with higher confidence when assessing abnormalities in specific pathologic states during pregnancy using the defined ROI. This work represents a first contribution towards establishing guidelines for future research in this specific field of study.
Resumo:
In cameras with radial distortion, straight lines in space are in general mapped to curves in the image. Although epipolar geometry also gets distorted, there is a set of special epipolar lines that remain straight, namely those that go through the distortion center. By finding these straight epipolar lines in camera pairs we can obtain constraints on the distortion center(s) without any calibration object or plumbline assumptions in the scene. Although this holds for all radial distortion models we conceptually prove this idea using the division distortion model and the radial fundamental matrix which allow for a very simple closed form solution of the distortion center from two views (same distortion) or three views (different distortions). The non-iterative nature of our approach makes it immune to local minima and allows finding the distortion center also for cropped images or those where no good prior exists. Besides this, we give comprehensive relations between different undistortion models and discuss advantages and drawbacks.
Resumo:
Há milhões de pessoas que são autodidactas e isso é genial, desde que seja honesto! Barbosa venceu o racismo? Talvez ainda não, pois por ignorância muitos olham apenas para a cor da pele. E quantas pessoas de cor têm cargos políticos em Portugal e nesta Europa cada vez mais racista?! § Abstract: There are millions of people who are self-taught and that's great, if it is honest! Barbosa won racism? Perhaps not because of ignorance many look only to skin color. And how many people of color have political office in Portugal and Europe in this increasingly racist?!
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.