11 resultados para realistic neural modeling
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
In this work it is demonstrated that the capacitance between two cylinders increases with the rotation angle and it has a fundamental influence on the composite dielectric constant. The dielectric constant is lower for nematic materials than for isotropic ones and this can be attributed to the effect of the filler alignment in the capacitance. The effect of aspect ratio in the conductivity is also studied in this work. Finally, based on previous work and by comparing to results from the literature it is found that the electrical conductivity in this type of composites is due to hopping between nearest fillers resulting in a weak disorder regime that is similar to the single junction expression.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort
Resumo:
Chronic stress impairs cognitive function, namely on tasks that rely on the integrity of cortico-limbic networks. To unravel the functional impact of progressive stress in cortico-limbic networks we measured neural activity and spectral coherences between the ventral hippocampus (vHIP) and the medial prefrontal cortex (mPFC) in rats subjected to short term stress (STS) and chronic unpredictable stress (CUS). CUS exposure consistently disrupted the spectral coherence between both areas for a wide range of frequencies, whereas STS exposure failed to trigger such effect. The chronic stress-induced coherence decrease correlated inversely with the vHIP power spectrum, but not with the mPFC power spectrum, which supports the view that hippocampal dysfunction is the primary event after stress exposure. Importantly, we additionally show that the variations in vHIP-to-mPFC coherence and power spectrum in the vHIP correlated with stress-induced behavioral deficits in a spatial reference memory task. Altogether, these findings result in an innovative readout to measure, and follow, the functional events that underlie the stress-induced reference memory impairments.
Resumo:
A unique neural electrode design is proposed with 3 mm long shafts made from an aluminum-based substrate. The electrode is composed by 100 individualized shafts in a 10 × 10 matrix, in which each aluminum shafts are precisely machined via dicing-saw cutting programs. The result is a bulk structure of aluminum with 65 ° angle sharp tips. Each electrode tip is covered by an iridium oxide thin film layer (ionic transducer) via pulsed sputtering, that provides a stable and a reversible behavior for recording/stimulation purposes, a 40 mC/cm2 charge capacity and a 145 Ω impedance in a wide frequency range of interest (10 Hz-100 kHz). Because of the non-biocompatibility issue that characterizes aluminum, an anodization process is performed that forms an aluminum oxide layer around the aluminum substrate. The result is a passivation layer fully biocompatible that furthermore, enhances the mechanical properties by increasing the robustness of the electrode. For a successful electrode insertion, a 1.1 N load is required. The resultant electrode is a feasible alternative to silicon-based electrode solutions, avoiding the complexity of its fabrication methods and limitations, and increasing the electrode performance.
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
Pectus Carinatum is a deformity of the chest wall, characterized by an anterior protrusion of the sternum, often corrected surgically due to cosmetic motivation. This work presents an alternative approach to the current open surgery option, proposing a novel technique based on a personalized orthosis. Two different processes for the orthosis’ personalization are presented. One based on a 3D laser scan of the patient chest, followed by the reconstruction of the thoracic wall mesh using a radial basis function, and a second one, based on a computer tomography scan followed by a neighbouring cells algorithm. The axial position where the orthosis is to be located is automatically calculated using a Ray-Triangle intersection method, whose outcome is input to a pseudo Kochenek interpolating spline method to define the orthosis curvature. Results show that no significant differences exist between the patient chest physiognomy and the curvature angle and size of the orthosis, allowing a better cosmetic outcome and less initial discomfort.