4 resultados para postoperative complication

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Precise needle puncture of the renal collecting system is an essential but challenging step for successful percutaneous nephrolithotomy. We evaluated the efficiency of a new real-time electromagnetic tracking system for in vivo kidney puncture. Materials and Methods: Six anesthetized female pigs underwent ureterorenoscopy to place a catheter with an electromagnetic tracking sensor into the desired puncture site and ascertain puncture success. A tracked needle with a similar electromagnetic tracking sensor was subsequently navigated into the sensor in the catheter. Four punctures were performed by each of 2 surgeons in each pig, including 1 each in the kidney, middle ureter, and right and left sides. Outcome measurements were the number of attempts and the time needed to evaluate the virtual trajectory and perform percutaneous puncture. Results: A total of 24 punctures were easily performed without complication. Surgeons required more time to evaluate the trajectory during ureteral than kidney puncture (median 15 seconds, range 14 to 18 vs 13, range 11 to 16, p ¼ 0.1). Median renal and ureteral puncture time was 19 (range 14 to 45) and 51 seconds (range 45 to 67), respectively (p ¼ 0.003). Two attempts were needed to achieve a successful ureteral puncture. The technique requires the presence of a renal stone for testing. Conclusions: The proposed electromagnetic tracking solution for renal collecting system puncture proved to be highly accurate, simple and quick. This method might represent a paradigm shift in percutaneous kidney access techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laparoscopic surgery (LS) has revolutionized traditional surgical techniques introducing minimally invasive procedures for diagnosis and local therapies. LSs have undeniable advantages, such as small patient incisions, reduced postoperative pain and faster recovery. On the other hand, restricted vision of the anatomical target, difficult handling of the surgical instruments, restricted mobility inside the human body, need of dexterity to hand-eye coordination and inadequate and non-ergonomic surgical instruments may restrict LS only to more specialized surgeons. To overcome the referred limitations, this work presents a new robotic surgical handheld system – the EndoRobot. The EndoRobot was designed to be used in clinical practice or even as a surgical simulator. It integrates an electromechanical system with 3 degrees of freedom. Each degree can be manipulated independently and combined with different levels of sensitivity allowing fast and slow movements. As other features, the EndoRobot has battery power or external power supply, enables the use of bipolar radiofrequency to prevent bleeding while cutting and allows plug-and-play of the laparoscopic forceps for rapid exchange. As a surgical simulator, the system was also instrumented to measure and transmit, in real time, its position and orientation for a training software able to monitor and assist the trainee’s surgical movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction and Objectives. Laparoscopic surgery has undeniable advantages, such as reduced postoperative pain, smaller incisions, and faster recovery. However, to improve surgeons’ performance, ergonomic adaptations of the laparoscopic instruments and introduction of robotic technology are needed. The aim of this study was to ascertain the influence of a new hand-held robotic device for laparoscopy (HHRDL) and 3D vision on laparoscopic skills performance of 2 different groups, naïve and expert. Materials and Methods. Each participant performed 3 laparoscopic tasks—Peg transfer, Wire chaser, Knot—in 4 different ways. With random sequencing we assigned the execution order of the tasks based on the first type of visualization and laparoscopic instrument. Time to complete each laparoscopic task was recorded and analyzed with one-way analysis of variance. Results. Eleven experts and 15 naïve participants were included. Three-dimensional video helps the naïve group to get better performance in Peg transfer, Wire chaser 2 hands, and Knot; the new device improved the execution of all laparoscopic tasks (P < .05). For expert group, the 3D video system benefited them in Peg transfer and Wire chaser 1 hand, and the robotic device in Peg transfer, Wire chaser 1 hand, and Wire chaser 2 hands (P < .05). Conclusion. The HHRDL helps the execution of difficult laparoscopic tasks, such as Knot, in the naïve group. Three-dimensional vision makes the laparoscopic performance of the participants without laparoscopic experience easier, unlike those with experience in laparoscopic procedures.