3 resultados para piezoelectric quartz crystals

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that electrospun poly(vynilidene fluoride) nanofibers are fully poled right after preparation and show b-phase contents of 70%, therefore being able to be implemented into electroactive devices without further processing steps. Further,the local piezoelectric properties of individual electrospun fibers have been studied by piezoresponse force microscopy. Piezoelectric response, polarization switching, and nanoscale patterning of the fibers have been demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy harvesting efficiency of electrospun poly(vinylidene fluoride), its copolymer vinylidene fluoride-trifluoroethylene and composites of the later with piezoelectric BaTiOon interdigitated electrodes has been investigated. Further, a study of the influence of the electrospinning processing parameters on the size and distribution of the composites fibers has been performed. It is found that the best energy harvesting performance is obtained for the pure poly(vinylidene fluoride) fibers, with power outputs up to 0.03 W and 25 W under low and high mechanical deformation. The copolymer and the composites show reduced power output due to increased mechanical stiffness. The obtained values, among the largest found in the literature, the easy processing and the low cost and robustness of the polymer, demonstrate the applicability of the developed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the influence of polarization and morphology of electroactive poly(vinylidene fluoride), PVDF, on the biological response of myoblast cells. Non-poled, ‘‘poled +’’ and “poled-“ -PVDF were prepared in the form of films. Further, random and aligned electrospun -PVDF fiber mats were also prepared. It is demonstrated that negatively charged surfaces improve cell adhesion and proliferation and that the directional growth of the myoblast cells can be achieved by the cell culture on oriented fibers. Therefore, the potential application of electroative materials for muscle regeneration is demonstrated.