7 resultados para parallel robots,cable driven,underactuated,calibration,sensitivity,accuracy
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
The exponential increase of home-bound persons who live alone and are in need of continuous monitoring requires new solutions to current problems. Most of these cases present illnesses such as motor or psychological disabilities that deprive of a normal living. Common events such as forgetfulness or falls are quite common and have to be prevented or dealt with. This paper introduces a platform to guide and assist these persons (mostly elderly people) by providing multisensory monitoring and intelligent assistance. The platform operates at three levels. The lower level, denominated ‘‘Data acquisition and processing’’performs the usual tasks of a monitoring system, collecting and processing data from the sensors for the purpose of detecting and tracking humans. The aim is to identify their activities in an intermediate level called ‘‘activity detection’’. The upper level, ‘‘Scheduling and decision-making’’, consists of a scheduler which provides warnings, schedules events in an intelligent manner and serves as an interface to the rest of the platform. The idea is to use mobile and static sensors performing constant monitoring of the user and his/her environment, providing a safe environment and an immediate response to severe problems. A case study on elderly fall detection in a nursery home bedroom demonstrates the usefulness of the proposal.
Resumo:
In cameras with radial distortion, straight lines in space are in general mapped to curves in the image. Although epipolar geometry also gets distorted, there is a set of special epipolar lines that remain straight, namely those that go through the distortion center. By finding these straight epipolar lines in camera pairs we can obtain constraints on the distortion center(s) without any calibration object or plumbline assumptions in the scene. Although this holds for all radial distortion models we conceptually prove this idea using the division distortion model and the radial fundamental matrix which allow for a very simple closed form solution of the distortion center from two views (same distortion) or three views (different distortions). The non-iterative nature of our approach makes it immune to local minima and allows finding the distortion center also for cropped images or those where no good prior exists. Besides this, we give comprehensive relations between different undistortion models and discuss advantages and drawbacks.
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant’s position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.
Electromagnetic tracker feasibility in the design of a dental superstructure for edentulous patients
Resumo:
The success of the osseointegration concept and the Brånemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant’s position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.
Resumo:
Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.
Resumo:
Background: Several studies link the seamless fit of implant-supported prosthesis with the accuracy of the dental impression technique obtained during acquisition. In addition, factors such as implant angulation and coping shape contribute to implant misfit. Purpose: The aim of this study was to identify the most accurate impression technique and factors affecting the impression accuracy. Material and Methods: A systematic review of peer-reviewed literature was conducted analyzing articles published between 2009 and 2013. The following search terms were used: implant impression, impression accuracy, and implant misfit.A total of 417 articles were identified; 32 were selected for review. Results: All 32 selected studies refer to in vitro studies. Fourteen articles compare open and closed impression technique, 8 advocate the open technique, and 6 report similar results. Other 14 articles evaluate splinted and non-splinted techniques; all advocating the splinted technique. Polyether material usage was reported in nine; six studies tested vinyl polysiloxane and one study used irreversible hydrocolloid. Eight studies evaluated different copings designs. Intraoral optical devices were compared in four studies. Conclusions: The most accurate results were achieved with two configurations: (1) the optical intraoral system with powder and (2) the open technique with splinted squared transfer copings, using polyether as impression material.