3 resultados para multisensory statistical learning
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
This paper aims to describe the processes of teaching illustration and animation, together, in the context of a masters degree program. In Portugal, until very recently, illustration and animation higher education courses, were very scarce and only provided by a few private universities, which offered separated programs - either illustration or animation. The MA in Illustration and Animation (MIA) based in the Instituto Politécnico do Cávado e Ave in Portugal, dared to join these two creative areas in a common learning model and is already starting it’s third edition with encouraging results and will be supported by the first international conference on illustration and animation (CONFIA). This masters program integrates several approaches and techniques (in illustration and animation) and integrates and encourages creative writing and critique writing. This paper describes the iterative process of construction, and implementation of the program as well as the results obtained on the initial years of existence in terms of pedagogic and learning conclusions. In summary, we aim to compare pedagogic models of animation or illustration teaching in higher education opposed to a more contemporary and multidisciplinary model approach that integrates the two - on an earlier stage - and allows them to be developed separately – on the second part of the program. This is based on the differences and specificities of animation (from classic techniques to 3D) and illustration (drawing the illustration) and the intersection area of these two subjects within the program structure focused on the students learning and competencies acquired to use in professional or authorial projects.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.