7 resultados para maintenance program
em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually oriented towards the imperative or object paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird-Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general, alternative to slicing functional programs
Resumo:
This paper reports on the development of specific slicing techniques for functional programs and their use for the identification of possible coherent components from monolithic code. An associated tool is also introduced. This piece of research is part of a broader project on program understanding and re-engineering of legacy code supported by formal methods
Resumo:
Program slicing is a well known family of techniques intended to identify and isolate code fragments which depend on, or are depended upon, specific program entities. This is particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, and corresponding tools, target either the imperative or the object oriented paradigms, where program slices are computed with respect to a variable or a program statement. Taking a complementary point of view, this paper focuses on the slicing of higher-order functional programs under a lazy evaluation strategy. A prototype of a Haskell slicer, built as proof-of-concept for these ideas, is also introduced
Resumo:
A large and growing amount of software systems rely on non-trivial coordination logic for making use of third party services or components. Therefore, it is of outmost importance to understand and capture rigorously this continuously growing layer of coordination as this will make easier not only the veri cation of such systems with respect to their original speci cations, but also maintenance, further development, testing, deployment and integration. This paper introduces a method based on several program analysis techniques (namely, dependence graphs, program slicing, and graph pattern analysis) to extract coordination logic from legacy systems source code. This process is driven by a series of pre-de ned coordination patterns and captured by a special purpose graph structure from which coordination speci cations can be generated in a number of di erent formalisms
Resumo:
Abstract: in Portugal, and in much of the legal systems of Europe, «legal persons» are likely to be criminally responsibilities also for cybercrimes. Like for example the following crimes: «false information»; «damage on other programs or computer data»; «computer-software sabotage»; «illegitimate access»; «unlawful interception» and «illegitimate reproduction of protected program». However, in Portugal, have many exceptions. Exceptions to the «question of criminal liability» of «legal persons». Some «legal persons» can not be blamed for cybercrime. The legislature did not leave! These «legal persons» are v.g. the following («public entities»): legal persons under public law, which include the public business entities; entities utilities, regardless of ownership; or other legal persons exercising public powers. In other words, and again as an example, a Portuguese public university or a private concessionaire of a public service in Portugal, can not commit (in Portugal) any one of cybercrime pointed. Fair? Unfair. All laws should provide that all legal persons can commit cybercrimes. PS: resumo do artigo em inglês.
Resumo:
Program slicing is a well known family of techniques used to identify code fragments which depend on or are depended upon specific program entities. They are particularly useful in the areas of reverse engineering, program understanding, testing and software maintenance. Most slicing methods, usually targeting either the imperative or the object oriented paradigms, are based on some sort of graph structure representing program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph transversal algorithms. This paper proposes a completely different approach to the slicing problem for functional programs. Instead of extracting program information to build an underlying dependencies’ structure, we resort to standard program calculation strategies, based on the so-called Bird- Meertens formalism. The slicing criterion is specified either as a projection or a hiding function which, once composed with the original program, leads to the identification of the intended slice. Going through a number of examples, the paper suggests this approach may be an interesting, even if not completely general alternative to slicing functional programs
Resumo:
This paper presents a catalog of smells in the context of interactive applications. These so-called usability smells are indicators of poor design on an application’s user interface, with the potential to hinder not only its usability but also its maintenance and evolution. To eliminate such usability smells we discuss a set of program/usability refactorings. In order to validate the presented usability smells catalog, and the associated refactorings, we present a preliminary empirical study with software developers in the context of a real open source hospital management application. Moreover, a tool that computes graphical user interface behavior models, giving the applications’ source code, is used to automatically detect usability smells at the model level.