3 resultados para k-Means algorithm

em CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As redes sociais virtuais são um meio potencialmente rápido e económico de promoção de negócios onde se geram clientes potenciais, exposição para o negocio, informações de mercado e tráfego do Website; se promove o marketing, a recomendação, o marketing directo, a gestão da marca e a prospecção de dados/ pesquisa e se potencia a subcontratação de tarefas de desing/ desenvolvimento, pesquisa, criação de conteúdo e gestão de comunidade. O estudo teve por base um questionário colocado nas redes sociais virtuais e no grupo de divulgação da Association for Information Systems, de 12 de Abril a 14 de Junho de 2012, tendo-se obtido 450 respostas, das quais 330 foram validas.Obtiveram-se respostas de todo o Mundo, predominantemente de Portugal(61,33%) e Brasil(10,89%), tendo-se concluído que o Facebook(78,51%) e o Linkedin(71,99%) são percebidos como as redes sociais virtuais mais úteis na promoção de negócios. Para melhor compreender a percepção que os utilizadores das redes sociais virtuais têm sobre as vantagens e oportunidades destas redes na promoção de negócios, foi utilizada a analise de clusters tendo a solução k-means se mostrando a mais estável e a de mais fácil interpretação lógica, permitindo a segmentação dos utilizadores em três clusters: Cluster 1("mais pessimista"), Cluster 2("intermédio") e Cluster 3("mais optimista"). Esta segmentação permite identificar correlações entre as variáveis grupo, morada, sexo, área de estudo, situação profissional e o numero de empregados do negocio, com os diferentes segmentos. Adicionalmente, verificam-se correlações entre as variáveis grupo, morada, sexo, área de estudo e situação profissional e a variável horas/ semana a usar as redes sociais virtuais na promoção de negócios. Espera-se que este trabalho contribua para a identificação e desenvolvimento dos métodos e estratégias que potenciem a promoção de negócios nas redes sociais virtuais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many organisations need to extract useful information from huge amounts of movement data. One example is found in maritime transportation, where the automated identification of a diverse range of traffic routes is a key management issue for improving the maintenance of ports and ocean routes, and accelerating ship traffic. This paper addresses, in a first stage, the research challenge of developing an approach for the automated identification of traffic routes based on clustering motion vectors rather than reconstructed trajectories. The immediate benefit of the proposed approach is to avoid the reconstruction of trajectories in terms of their geometric shape of the path, their position in space, their life span, and changes of speed, direction and other attributes over time. For clustering the moving objects, an adapted version of the Shared Nearest Neighbour algorithm is used. The motion vectors, with a position and a direction, are analysed in order to identify clusters of vectors that are moving towards the same direction. These clusters represent traffic routes and the preliminary results have shown to be promising for the automated identification of traffic routes with different shapes and densities, as well as for handling noise data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.